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SUMMARY

The theory of analytic functions is used as a new
approach to the study of conventional multiplexing
schemes. The multiplexing process involves double and

triple modulation techniques. The most general form

of modulated waves exhibit simultaneous phase and enve-
lope fluctuation. |

Phase and envelope relationships described in math-
ematical tormulation have a strong dependence on the real
and complex zeroes of the actual wave. The properties
of analytic signals are studied, yielding a general theory
of zero-representation of the original signal that con-
tains its informational attributes. The mathematical
representation of zeroes of a periodic real signal has
physical significance when related to the spectra, phase,
and envelope fluctuations. The Zero-pattern representa-
tion offers the advantage of showing the phase envelope
fluctuaation in the time domain, and a frequency domain
representation can be based on the frequency spectrum
given by the Fourier series coefficient.

The zero representation is used to study different
forms of modulated waves based on the principle of fact-
orization in terms of the Fourier series expansion and in
the property of zero-pattern superposition resulting from
the product of two signals. Multiplicative processes are

the most amenable to a zero-based description, and special

Wi




attention is devoted to the study of the characteristics
of this type of modulated wave from its zero-pattern
configuration. The zero-manipulation property makes
mathematical representation easier to handle.

A qualitative comparison between different multiplex-—
ing systems in Frequency Division Multiplexing (FDM) and
Time Division Multiplexing (TDM) is also possible interms of

zexoes cof zcr icn. Opecial attention is giver
to study of crosstalk effects in multiplexing systems
whose mathematical analysis has not been developed so far.
Tensor analysis is employed in the multi-space in which
the zerosof multiplexed signals are located. The eval-
uation of crosstalk in terms of tensor formsresults in
simplification . 'when automatic computing techniques
are used.

A complete computer program has been developed in
two different versions to yield the "zero-locus" of the
modulated waveform. Some guidelines to compute the inter-
channel crosstalk were also developed.

Tne thesis concludes with a comparison of different

multiplexing systems.
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1.0 INTRODUCTION

1.1 Background

In radio telemetry applications it is necessary to
transmit more than one channel of information simulta-
necusly. It is usually impractical and inefficient to
use a separate radio link for each channel. The saving
of space, weight, and powar is an important consideration
in the design of a multichannel system. Such a process
of transmitting more than one channel of information
over a single link is called multiplexing.

Although there are other multiplexing schemes feasible,
only two general methods of multiplexing have been commonly
used, namely freguency division multiplexing (FDM) and
time division multiplexing (TDM).

A simplified block diagram of an FDM transmitter is
given in Fig. l.1l-l1. Frequency division multiplexing uses
a separate "subcarrier" frequency for each channel with
enough spacing to provide non-overlapping frequency inter-
vals for modulation of each subcarrier. The subcarriers
are modulated by the information signal in each channel and
are linearly added to form one electrical signai which
again modulates the "carrier" frequency. The modulated
carrier is transmitted. At the receiving end, as is shown
in Fig. 1.1-2, the modulated carrier is demodulated to

recover the transmitted form at point D. Then the



2
modulated subcarrier signals are selected by linear band-
pass filters. After demodulation of the subcarriers, a
final low-pass filter will give the transmitted message.
In general, the waveforms at locations marked with primed
letters in Fig. 1.1-2 correspond to those locations marked

with the same letters (unprimed) in the transmitter,

except for noise and distortion.

A time division multiplexing (TDM) system works in
a completely different way as is shown in Fig. 1.1-3.
Samples of the information waveforms are taken by the
commutator, which rotates rapidly enough so that these
waveforms change only slightly between samples. The
sequence of sample pulses next modulates a carrier fre-
quency, and the modulated carrier is transmitted. The
receiver performs a reciprocal operation as is shown in .
Fig.l.1-4. The modulated subcarrier pulses are routed
to the appropriate output channel by another decommutator.
The selected pulses are then integrated and interpolated.
The interpolated wave is then passed through a low-pass
filter that reconstructs the original signal.

The duality between the FDM and TDM systems lies in
the fact that the FDM system combines multiple information
channels in the frequency domain, whereas a TDM system
combines several message sources serially in thé time

domain and transmits them in parallel in the frequency
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domain. Frequency division multiplexing and time
division schemes will be analyzed and discussed in some

detail later.
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1.2 Systems Specification

The FDM and TDM systems occur in many forms, according
to thevtype of modulation used for subcarriers and carriers.
An unspecified system is symbolized by XX-XX, where the
first groﬁp'of letters refers to the type of subcarrier

modulation, and the second group of letters refers to the

- —-——— nww L ¥4 -~

tvee of ¢ M—~FM meains that

P

P - T
[ O S A Y Y I\ T AT RTINSy

the messages amplitude modulate the subcarriers, and the
sum of the modulated sﬁbcarriers frequency modulates the
carrier. Similarly, "triple" modulation systems can be
specified. In such systems, there is a group of double
modulation waves with spaced carrier frequencies which
may be used to modulate a still higher frequency carrier.
A critical study of the different systems was first
made by Landon in 1948. The efficiencies of the different
conventional schemes were compared on the basis of:
a) Wide~band gain: signal-to-noise ratio of
one single channel of a given multiplexing
system is compared with that of one AM channel,
D) Threshold: average power required to obtain
the wide-band gain,
¢) Minimum received signal power required for a
specific signal-to-noise ratio,

d) Signal-to-noise ratio on impulse noise

(only for some types of TDM) ,



e) Interchannel cross modulation,

f) Interchannel cross talk,

g) Mutual interference between multiplexing
systems operating on adjacent frequency
channels.

The classical theory of multiplexing had little

- PR M ] . - " - ] X [
Clienuge ia wmuse Lhan elygliteen yedrs. A systemallc malhe-—

matical model has not yet been developed for the conven-
tional multiplexing systems. During recent years new
mathematical techniques have become available. One of
the new signal models is called the analytic signal. The
use of analytic signals provides a new and powerful tool
for analysis of conventional multiplexing systems.

Future aerospace communications systems will reqﬁire
newly developed systems with increased channel capacity
and high efficiency. Most of the new multiplexing tech-
niques use hybrid models, and hence they feature simul-
taneous phase and amplitude modulation. Thus a systematic
mathematical study of phase-envelope relationships by use
of analytic signals offers the possibility of a general
theory of multiplexing. This thesis is concerned with
the application of modern signal and noise models‘to
multiplexing systems in order to study their properties

and limitations.




2.0 THE THEORY OF ANALYTIC SIGNALS

2.1 Definition

The analytic signal representation is very useful
as a theoretical technique for various types of signal
and noise waveforms. The analytic signal can be defined

.as a complex function of a real variable whose real and

Lilaglnary parts form a Hilbert transform pair. The

general form of the analytic signal is given:

As (£) = s(0) + 5 () @ 1=

an alternate form of which is:

As(’O =[As ('Q) e XP \\ QS(‘Q (a.t-?-)

wnere

s(t) = a Fourier-transformable réal signal
@(t) = a Hilbert transform of s(t).
Periodic signals are considered as Fourier-transfor-

mable, and impulses are also allowed. The actual waveform
is usually associated with the real or imaginary part of
the analytic signal. In other words, the analytic signal
As(t) representation is used for analysis in a way similar
to that of using complex exponential in A.C. circuit
analysis.

2.2 Hilbert transforms

)
S =+ p jw *if:it_é*c- (2.2-1)
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where P is the Cauchy principal value and is defined as

- e g - 3
P !sm [f S ? AT: + 5; éﬁ;ﬁ— A’f] .

gwo U=e T-x te €T

Since s(t) and @(t) form a transform pair

s<4c3=‘“Pf SCQ d <

PR . , . e L o
WiLLll ail lllteresedily pLropclL Ly ILLDL

namely

@(t)==—s(ﬁ-

Equivalent formulas for (2.2-1) are:

SORE SIS PN (.2 -3)

/S\(’c) =__)n:§ 5<'ﬁ+’t'?-;(f T) A'h’ (2.2"“?)

Where Equation (2.2-3) is obtained by letting t-tr =%’

Equation (2.2-4) is easily obtained from (2.2-3) as shown
below:

s T +—{ e

1l

- o7
A ( =s¢t =7 A (Tse )
w—g —T{-“J“@varjo;—_——;“cit
-Q

"

L (7 s(e+) —s(E—)
—7;-S — d~




H
th

s,(t) = cos (a,f 1—‘9\)

then the Hilbert transform of s,(t) 1is given by

S, &)

L (T eosfw )
-5 § c.s[ Al f] d

__—11—7:- gopcos(w“ﬁ-ﬂo}Qos wr - sin(wl+ *(’)-S')n wx J
- ~

]!

]

12

¢

x ~x

_—\—§°°°°5<°°'J‘”’>°'°“’“"‘ dp ae (TG Qe
™) v ),

The integrand in the first integral is an odd function of

i

-
I

therefore, the integral is zero. Hence,

) = "nffo‘,s;“(wtdr@ sinwx dx

R

=£;sM(wt+@%{w3£%gz d~

=_;_7:s.'.,\(wt+@w- =sin(wt +¢)

which leads to

2. = sin(wl+p). (22~O
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Ancother similar transform pair is:

So(t) = sin (wt + )

/5\?_ ) =-cos (wl + @) . (a.z.—- )

2.3 proverties of analytic signals

Whenever s(t) 1is Fourier transformable, its frequency

spectrum is given by

Fo(w) = Sws(t) JIVC gt

- A
Equation (2.2-1) suggests that €(t) may be the convolution
!
of s(t) and & . Therefore, the Fourier transform of
s(t) is the product of the Fourier transform of s(t) and
i

that of r¢ as shown below:
oﬂ_—(—_ ‘_Jw-t
F’s\(w> =Fs(w)5°07r_t e dt

. ! . . .
and, since ?;¥5 1s an "odd" function, the last integral

reduces to

Fa(w) = Folw)( o jsimwt Jt .
-

Hence for

w = O Fs\<w>=o
w > o ’ Fgcw>=—j\:5<w>

w < O Fo (w) = {Fs(w)
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and these results can be expressed in terms of the

"signum function" defined as

ssn w =\ fovr w >0
53h w = —| for w <O
's%v\w=o for w =0
4S%h w
)
o S

Figure 2.3-1 The function sgn .

Thus:

Falw) ==) san w Fs (w). (23-1)

S

For positive freqguencies, the spectrum of @(t) is

‘identical to that of s(t) except for the multiplying factor

(=)) that represents a phase lag of 90°. It can be seen from
Equation (2.3-1) that the Hilbert transform of s(t) can be
obtained by passing s(t) through a filter whose system, func-
tion is: H(w) = -J sgv (w)

and whose impulsé response is:

h(€) = 7% .
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This observation permits a simple proof of the property
thatfg(t) = -s(t). Suppose the output of the Hilbert
transforming filter’@(t) is passed through another Hilbert
transforming filter. Then the output of the second filter

A ,
would be §(t). The overall transfer function of the two

filters in cascade is:

[~

. 2
H® (w) = r*\\ san W]

Since s%na(w) = 4 I)

Fa (o) = H¥(w) Fg (&) = - F, (o)

)

or §(t) = =-s(t), The Fourier transform of the analytic

signal becomes, using the results above:

Fag (W) = Fs(wd + | Fg(w)
= Fg (w) +()[‘\i sqn @ Fs ()]
= Fs(w) [I +sqn ]

Fi (@) =2F,(w)  for w>o

FASC@ =Q for w0 . (3-2)

This is an important result in that the Fourier

transform of the analytic signal has no negative components,

S0 consequently its complex conjugate vanishes for positive

frequencies.

F/::( w) = QO -?‘of w >0 (2.3 T3>
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Therefore the analytic signal is .an analytic function of
a complex variable in the upper half complex plane. Thus
when.the Fourier spectrum of the actual signal is band-
limited (_. Wo & W < + w°> . the Fourier transform of.the
analytic signal vanishes for all (W except O < < Ws , and
the signal energy is calculated by using Parseval's theorem

as

iad Wo
By =J_lAs 173t =5 1R, ) *dw .
The real and imaginary parts of the analytic signal have
identical autocorrelation functions and power spectra,
which is derived below for a signal s(t):

P ) = Fyw) cFE (W) = R (w

Now the power spectrum of §(t) is: ’

* , : . * _ 2
Paled = Fa(w) - Fy =[-) sqn @ Fs ()] [+ sqn wFIW) ] = [ Fy (o)
and thus:

P/S\ Cw) = Ps (w)
Trie autocorrelation function is given by:

L ~® jwE
Rs(%) =2.77'§ FS(W>€Jw dw .
-0

Since the autocorrelation function is the Fourier transform

of the power spectrum:

R.CY) = Ra(X),
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The magnitude and phase of the analytic signal
mathematically define the magnitude and phase of the

actual signal. Equation (2.4~1) gives:

As (€) = s(&) + % (¢)

1

Vst + joc) &3P

= | As ()] &3P E2-9
A
where 2 (€) = arcTan [55_(('%))_:} (2-3-5)

The quantity lAs(f)l corresponds to the modulus or
"envelope." The phase of an analytic signal P(fﬂ is math-
ematically defined as the phase of the actual signal as
shown by Equation (2.3-4).

It was pointed out (Bedrosian 1962) that the envelope
and phase of an actual waveform have physical significance
oaly for narrow-band signals and cannot be measured
precisely except for pure sinusoids. It was also shown
that the correspondence of this mathematical representation
and that of the "rotating vector" or "phase diagram" are
employed to visualize a mathematical abstraction. The
analytic signal is a means of generalizing the phasor

diagram for use with modulated signals instead of simple

sine waves.
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) |
he Js o
¢ (6)
sCt)
Figure 2.3-2 Phasor diagram representing the analytic
signal

A Jdefinition of the analytic signal A (€Y will now be
made in terms of the analyticity of the complex function
/\SCjﬂ of a complex variable z. A complex function is
analytic at a point if its derivative exists at the point.
Sﬁch a function has all order of derivatives at this

point and within some neighborhood of the point (Churchill
1960). A function is analytic in a region R if it is
analytic at every point in R. The Céuchy-Riemann equa-
tions are necessary conditions for analyticity of a
function.

Now let AS(EQ be a function of the complex variable
7z =< +\j6‘

Tne function /45(#? is called an analytic signal ifs
a) As(z> is defined everywhere on the real axis,
except at the discontinuities of s(t),ithe real
part of A (t),
b) ,As(z) is bounded in the upper half plane (for

any value of ¢ >0), and
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c) As(z) may have poles in the lower half plane
That the given function A (z)is analytic in the
upper half plane is shown by applying Cauchy's theorem
| ' to the path of integration shown in Fig. 2.3-3, where
‘ t=to is an arbitraty point on the real axis, but is

distinct from any discontinuity of s(t).

Figure 2.3-3 Contour for an analytic signal

The Cauchy formula gives:
AS(Z) - [ Jﬁ@ alg . (2.3-6)
2T"J atB Z—é

Now evaluate (2.3-6) ét the point z=to.

Ag(te) = Pj tAf(t:) dt (2.3 ~7)

because as the radlus of the B circle approaches infinity,

the integral along B tends to zero and the integral along

the small half circle C is equal to
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By taking the real and imaginary parts of Equation

(2.3-7), the Hilbert transform pair is obtained:

s(4) ='_L/.___3._(.9_ ot (2.3-8)
, TS b= b
o0
S - 4 [ st 4t (23-9)
TTZw E-t, ,
It follows that the given signal in Equation

(2.2-1) 1is ahalytic as defined above. This important

‘result shows that the alternate approach to the definition

of the analytic signal yields the same result. The analytic
signal is defined in section 2.1 as a complex function
whose real and imaginary parts form a Hilbert transform
pair. Now from the definition of the analytic function

of a complex variable the property that describes the
analytic signal as a Hilbert transform pair is obtaingd.

Furthermore, it may be noted that

lm[és(ﬁ)] i H{ RQ(AS(UJ} (2.5-10)

Re [As (U] - —H{Im[As(f)U (23 -11)
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The function s(t) and §(t) form an orthogonal pair

o2
§ 25 4 =0
- P
and by Parseval's theorem, these are orthonormal as well,

since

§_:}sc—§>l‘°'4t '=J:’)F;<§)|2J1C =V[_ji—;<1c)1241c SEESNPE

=00
The phase and envélope form of the analytic signal

is defined

As (D) = o + 850 PO 45 iy
This representation is particularly useful when comparing
the analytic signal to the modulated real signal. The
modulated signal appears as the product of two time
functions: .
ALY = Ac@mMso].
The symbol A_(¥) represents the “carrier," and M%({'\)] repre-
sents the ﬁodulating signal. Assuming the general form as
AL (R) = e\jw.,t = tos Wot i—Js\n wotJ
the modulated signal becomes, (using SSB as an example) s
A= M) A, ) & < [so + 2] &
and |

RelACO] = s(Ocos ek - @Y 5in w k.

For other types of modulation, the M{[s(4] is different.
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Now, according to Equation (2.3-4),

Re[A®] - Re /A @] e;\o&)ﬂwoﬂ

= A, @] Qos[w,ﬁ - qb(t)] (2-3-13)
This equation demonstrates that the actual signal
s(t) représented by (2.3-13) has an envelope and phase
dcfined by thé analytic signal properties. The carrier
frequency W, is usually much greater than the bandwidth
of the modulated signal. The phase and envelope repre-
sentation of the actual signal are wholly describable in
terms of its zeroes. Thus the zeroes of a band-limited
wave can be viewed as its informational attributes
(Voelcker 1966). That can be shown as follows:
Taking the natural logarithm of the expression (2.3-4),
one obtains: .
I [As®]) = WA O] + e @.3-19)
and if |y EAs(ﬁD] is an analytic signal,

39 = Re [A, 0] * JA O] cos [H [In ], «)1]3 G3-19)

since from Eqaatlon (2.3-14)

L - H{ln 14,0 (2:3-1¢)
where H symbolizes the Hilbert transform. The Equation(2.3-/5)
shows that s(t) depends only on the envelope:hAs(t)],
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The conditions for InEASQSJ to be an analytic
function require thathAs(zﬂ cannot have singularities
in the upper half plane. In other words,,AsGQ cannot
have zeroes there.

One way to eliminate the zeroes of A (t) is to add
a positive constant to the real part of A (t), so that
it will never be negative. Thus the modified function

whose logarithm is an analytic signal is given as

Ap@ = ¢+ AR - o + (&) + 3 (%)
where [c.+s(t)]>0 for all t. The subscript MP refers
to "minimum phase", that ig, the function for which there
are no zeroes in the uppef half plane. The second con-

dition for analyticity is also satisfied by the modified

function

In AMP (t\) = |n c + \n[r] +‘_é_‘<’_§_€_2—] (2_.3_”)
fim In AMP<a> = |h —gor’ s 20 (2-,3_"‘3>

2>

where 2=“t+j€ in z-plane, because As(t) is an analytic
signal.

The real part of the analytic signal can be recov-
ered from the envelope if the logarithm of the signal
Ag(t) is analytic, and if the signal is free of "zeroes"

in the upper half plane. These conditions are met by
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the normalized function (Voelcker 1966)
/\+5('t> -LAM_P—QC_E)——I-—cos[HE“ ,\_A_ﬂ%‘g—)——'] (z's_{q)

Equation (2.3-16) shows that when A(z) is zero-free in
the upper half plane, phase information is contained in {(25.

Some general phase-envelope relationships can be

(Voelcker 1966) by noting that

2 (o) = 2 (0 %m-(o). <?--3‘2°)

Y

The symbol Z~d§)symbolizes the total number of zeroes
with subscripts U and L denoting the upper and lower
half plane. This general expression can be applied
without the requirement of analyticity and therefore
is useful for a large class of functions.

"One or more zeroes of A(t) can be conjugated without
affecting the envelope fluctuations." (Voelcker 1966)
This is important in multiplexing, there can be different
A(t) With the same phase-envelope as a whole. The phése
or the envelope can be manipulated to produce different
signals without one affecting the other. Thus a "common
envelope set" will beaset containing signals that differ
in phase but not in envelope or bandwidth.

From Equation (2.3-20 it can betseen that the minimum

phase case corresponds to the first term of the sum on
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the right side. The "maximum phase function" corres-

ponds to the second term:

AMA'K (¢ = IA(U, exp/ [ké = Pur (tﬂ (2.3—21)

Clearly A (¢) is the translated conjugate of

Anp(“ . The same equation shows that grouping zerogs

1s an additive operation meaning multiplication of the
functions themselves, since Equétion (2.3-20) refers to

ln A () . Thus; an analytic signal can be factored

y into as many multiplicative components as there are zeroes
in the signal. The above consideration may be summarized
as below:

a) The real part of the analytic signal can be

recovered from the envelope if the logarithm
of the signal is analytic.
b) One or more zeroces of A (t) can be conjugated
without affecting the envelope fluctuations.
¢) An analytic signal can be factored intp as
many components as there are zeroes in the

signal.

2.4 Analytic Signal Representation

The properties of analytic signals are illustrated

by a few examples. A band-limited periodic signal has
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a finite number of zeroes in a given time ihterval, and
the z2roes are felgtéd to its frequencies. However,
band-limited aperiodic signals have an infinite number
Oof zeroes and an assymtotically finite density'of

zeroes.
a) The periodic signal:

Let s(t) be a periodic signal defined by
s(t) = K- Bcosewl (2.4_9

The "phasor" representation of the periodic si nal given
p p p g

above is:

Figure 2.4-1 Phasor representation of $(¢= K—Bco:wf
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because

s(t) = K - ——g— [e‘iwt + e_~Jwé_] (2'4_2)

The s(t) phasor is reproduced for the following

27

cases;
9 K=o
b o<k< B
¢) k>38
p & Zm | Zm
B
(0] /2 w B/?' w 3/2
~ ~
- XN X
- >
\/// K \/// ~ }\ Re
- /z_ - B/z Bé
q) k=0 b) o<k<B ¢ K>B
wé

Figure 2.4-2 Phasor representation for 5(¢)= K-Bcos
The same signal may be studied by use of its "zero"

representation by replacing t with z in Equation (2.4-2)

ass

Z:é-‘—/r
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. B 1 B 2 2 K -
— - — — " e— - m—— r , 2‘4 3
s@r) = K > [r'~ r] [r = i] ¢ )

wiere ra @¥p jwz

The roots of this last equation are:

r—_-;—[f(.: }/K"-_B"J

The result of this expression is:

zp= bajc < 270 _ [—;—(K:Vk’-—az);) (24 -5)

expjw ((_. *,./'0') (2.4 ‘4)

(3]
= 2T+ . Arccosh (—E—) for K3>B
w J 8

because

ccorh () = b [4 (<2 g (@ 4-5)
Thus in this form the signal can be described in terms of
its zeroes.

The roots of Equation (2.4-5) give the location of
"zeroces" in the complex z-plane as is shown in the right
half Figures 2.4-3, 2.4-4, and 2.4-5, and their conven-
tional representation is given on the left half of these
figures for

a K=0
b)) o<k< B

c) k>28
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§sty) | JT
[ Te &% T= 2.11'/0
\/ t R c
a K=0
Figure 2.4-3 Sine wave of conventional representation
b) zero array
\ / - —
\/ / N/ ¢ ¢
™27, %
& o< k< B
Figure 2.4-4 Zero array representation as K parameter
varies
s(e .
§< | V7
\’ < 9 <
¢ (A
L Q Q
¢/ k>8

Figure 2.4-5 2Zero array - for

K >a
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A single frequency periodic signal

slt) = K coswbt = K/‘?-[@P (/IG‘)(') N exP(_-jwt)]

has a second order polynomial representation in the complex
z-plane, and there are two zeroes in each period. These
results can be generalized in the following wdy: A band-
limited (wi< nﬁﬁ) periodic function s(t) can be

expanded in a Fourier series

s(t) = £ C exp Ik e, b A (2.4-7)

k=-n

where T . 2Ty, = period

The characteristic polynomial of this function in
parametric form will be of second order. That is, its
representation on the z-plane will give 2a zeroes in
conjugate pairs. This double symmetry about the real
and imaginary axis follows from the properties of a
polynomial with real coefficients as it is in Equation
(2.4-5).

Multiplicative Models for Analytic Signals

The above theory is generalized now to demonstrate
how the signal-factorization principle can be used to find
the zerces of the analytic function for more complex

signals.
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Given an analytic signal of some complicated form,
the complex z-plane will contain a zZero-array which is
periodic with a period of Tk.égl and has 2n zeroes per
period.

Consider the tth zero in the pattern of T; it is
located at
2 = O +J"G_.'

of an analytic signal A (t)

At) = 1 - expj'o),t . (2.4 -8)
A solution for the zeroes can be obtained as follows:

With o = a¢(-jw,20 ,» Eguation (2.4-8) becomes:

Aile) = 4 - S

which reduces to zero for t = 2/ and

I

evp (= jwe2 = letil exp (- jenti) f-4-8a)

x; =
or 1l = exp W77 (z.a-sb)
where o; = A, ai)
GJo
and
t“ = 2mn : h=*1 2 *3 ... (2.4‘8()

G
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Multiplicative Property

The "multiplicative property" associated with the

zero decomposition of a signal can be described as
n

Ale) = T_r Aclt)

where Ailt) is an "elementary signal" of the type

described above in (2.4-8); then

Alt) JnT [o - 0!"”‘P)“’°tj (2.4»‘1)

(=1
where o = a[ZJ] is associated with the (lh  zero, and

also

n
Alt) = = e emp jrot (2.4=19)
ko
where ¢« are the coefficients of the expanded product.

The last expression describes the model of an analytic

signal associated with the n-zero pattern.

Summary of Characteristics and Rules for Analytic Signals

The following characteristics will be used frequently
in the present work:

a) The zeroes of the analytic signal are determined
by the factorization of its Fourier series as shown in

Equations (2.4-9) and (2.4-10):

A(t) = ﬁ [4 - O(;expjw,(']



b)

9]
~-

d)

e)

f)
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n
Alt) = 5 o exp jx wt

kxO
If the bandwidth of one elementary signal is
defined as VV:f%zékwhere T is the period of
the corresponding analytic signal, then the
bandwidth of the analytic signal A(t) is nW
The common euvelope set associated with A(t)
can be generated by systematic zero conju-
gation; that is, by replacing =; with =%
or |a;| with |\
If all zeroes are in the lower half plane, then
jxil < 4 for all L , A(t) is a "minimumlphase"
function (MP), and its phase and logarithm
envelope are a Hilbert pair as are their deriv-
atives.
If all zeroes are in the upper half plane, then
jx;} >4 for all ( and A(t) is a"maximum phase"
function with k> nw . The coefficients of the
Fourier seriesare reversed and conjugated. ]A(t”
is held invariant.
If K of the zeroes are temporally periodic
within the pattern and have the same ordinate,
then the product of the corresponding K ele-

mentary signals can be reduced by z-plane
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scaling to a single elementary signal of

form:
1 - e_XP jk(«)(t'ak)’

If complex zeroes occur only in conjugate
pairs and n is an even number, then

h= 2(ng+ nc)
where n, is half the number of real zeroes,
and Ve is the number of pairs of complex
conjugate zaroes. Then the analytic signal

can be represented as

Alt) = s(t) exp J [—2— wt + GQJ‘

The real signal s(t) is periodic in T and
band~limited to:“%ML and the coefficients
in Equation (2.4-10) must exhibit real-even,
imagi‘naxiy—-odd symmetry about the"-i-tk coef-
ficient.

The signal s(t) can be factored into the
product of two band-limited real signals

S(t) = s, (t) - Seqlt)

where cz and Rz denote the wholly complex ]oarfs

34

and real parts respectively. Ifn or Ng LS zero

then %, or Ss:is taken as unity. The values

0f S, and sg,are given by

Sca (t) = ﬁ_ [cosln co(q'[) ~ Cos W (t-—’c’():}

(=’
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where .Zg:tfijlfﬂ is the location of the ith
conjugate pair:

s Te - T, T -7,
e T (55 - (o 253]

U‘l(')='

the 2np real zeroes are arbitrarily arranged

into np pairs (2. 2).
i) If all zeroes are of even order, then
\AWl = st} 20
and |A(t)| is bang limited.

2.5 Analytic. Signals Applications in Modulation Svstems

So far the theory of analytic signals has been
developed to show how the "zero-locus" of such éignéis
contains their fundamental informational attributes. Now
a manipulation of zeroes of the analytic signal is shown
to modify the signal properties. |

Classical modulation processes are based simply on
making some parameter of the carrier (such as amplitude
Or angle) directly proportional to some linear function
of the modulation signal. A new approach to modulatioﬁ
can Dbe made through the theory of analytic signals, which
permits the development of additional useful modulation
methods. Toward this end, it will be said that a modu-

lation process is admissible if the zeroes of the modu-
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lating signal can be exactly recovered from the Zeroes
of the modulated.wave. The modulated wave need not
have the same zeroes, or even the same number of zeroes
as the modulating signal. The zeroes can be moved
abcut, inverted, or deleted for convenience, provided
that such manipulation can be reversed to obtain the
Urigylnal zZeroes in a demodulation process.

An application of the analytic signal theory to
modulation is illustrated in the cases of three classical
modulation techniques, which are Amplitude Modulation (AM) ,
Single Side Band (SSB), and Frequency Modulation (FM) .
Analagous to the "root-locus" method in servomechanisms,
a so-called "zero locus" can be drawn, showing how the
zeroes of the analytic function vary as a function of a

parameter of the modulating signal.

2.6 Amplitude Modulation (aM)

Amplitude modulation is conventionally defined as

S (t) = s(t) cos w.t with oz W
where @, 1is the carrier frequency, and s(t) is a real

modulating signal of bandwidth * W, . 1In analytic form,
2
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where SM‘(U is the Hilbert transform of Ssi (&) , Ffrom

SAH (f) = S(f) cos C«-’oé v (26"‘1)

then
S0t = sle) sn awlt (26-2)
and
A (E) - st e"/’j@oé'.
Tne zeroes of AuM(U are those of s(t), because s(t)
is real. The zeroes either must be real or appear in
complex conjugate pairs.
Introducing the property (9) of analytic signals

(from Section 2.4):

ste) - s, (] - s, (t) - (26-3)

Rz
The number of zeroes per period n is:

n = Z(HCOF nr.) = Wq-r-' (2.6"4)

For example, let the modulating signal s(t) be the two-

component square wave approximation shown in Fig. 2.6-1.
b s '

Figure 2.6-1 The two component square wave
' representation
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S(fj = C + cost - COSBLL (2-6-5)

It follows that the zero count is six from bandwidth
considerations as shown below in Equation (2.6-6). The

real signal can be expressed as

jut -t J3wt —j3wt
() e + & e + &
St/ = C + -

In order to find the zeroes of the analytic signal m(t)

corresponding to s(t), replace the variable "t*" by

to obtain:
six) = -1 (x6 - 3x% - 6CX3+3><7'_)')
- 6)(3 N 4
where
Jwz
© = (2.6-6)

Thus the zeroes of the analytic signal are given by the

six roots of the equation

6 “4

X - 3x - 6cx3 ¢ a3x* _ =0 . (2.6'7)

L §

Tne roots of this polynomial are a function of the para-
meter modulation factor ¢, and it is a variation of ¢

that produces the "zero-locus."
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The analytic signal corresponding to s(t) is A (t)
Aslt) = sle) + jS(Y)

where 5(t)is the Hilbert transform of s(t).

(2.2-5),

From Equation

H]’ cos wt} = sinwt
A | cm 3wt
H ICG)A OW“J " >t 1 4

and when this is substituted in Equation (2.6-7), it results

in

Ag (¢) = ¢+ coswt +_j sinawt = 3’ cos 3wl _J' :?’- sin 3ct
-k ’
= ¢+ e’ _ é eﬁ“"t‘ (2.6-9)

Now it is desired to find the zero trajectories as the

parameter c¢ is varied. The technique previously indicated

can be used here as follows:

a) substitute ¢ For z= b+
b) let X = exp jw z
c) therefore, As(z) = ¢ « exp (Joz) - 3l exp (jwz)
| The zeroces of the analytic signal are given by
x3 - 3x -3¢ =0 @0—1@

The simplification is apparent. The analytic signal model

provides a simpler way to find the zero trajectories of
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the original signal. In the previous sample, the
original modulated signal had a zero-pattern with a total
number of six zeroes, but it is found that the corres-
ponding analytic signal has a zero-pattern of three zeroes
given by the expression (2.5=10). A cubic equation
results instead of the sixth order polynomial of the ori-
girnal signal. The simplifiecd calculations neceded for
classical modﬁlation.techniques is one of the main advan-
tages of the use of the analytic signal representation.
In fact it is shown later that a more efficient mathema-

- tical description of the classical models will allow

development of further results.

CAS
I r 9 |
, < =
t
) o
_ a <= . 74«3
l AV |
1 ? 7
%— e_ e
¢
A/ C= Q

Figure 2.8 Zero pattern for the real signal: a) for 100%
modulation b) for suppressed carrier operation
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2.7 Single-Side Band Systems (SSB)

Amplitude modulation systems are characterized by a
symmetrical zero pattern along the real axis in the
z-plane and envelope detectability in case of a strong
carrier.

It is known (Property ¢ of analytic signals) that
the zeroces of a modulated wave can be conjugated without
its affecting the envelope or the bandwidth of the wave.
There will be a common envelope "set" of signals for each
modulating signal. The following examples show how
different zero-pattern configurations may represent the
same modulation wave; in this case, the square wave signal

of the previous example Equation (2.6-5) is used.

b

Figure 2.7-2 Zeroes of the non-minimum phase sighal
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A non-minimum phase signal (NMP) is arbitrarily
chosen in Figure 2.7-1 to represent the square wave
signal. It has zeroes in the upper and lower z-plane.
The ,same square wave signal 1s represented in Figure
2.7-2 by an arbitrarily chosen minimum phase signal (MP)
that has all its zeroes in the lower half z-plane.
varioﬁs exXperiments (Voelcker 1966) show that the NMP
pattern with zeroes in both UHP and LHP yields a more

symmetrical spectrum than the MP pattern.

LV

Figure 2.7-1 Zeros of minimum phase signal



exampies (2.4).

indicated in

Analytic Signals.

Consider the pattern

zerxoes are given:

Figure 2.6-11, as can be shown by following the

Secticn 2.4, Multiplicative Mocdels

of Figure 2.7-3 below

4%
3

o e,§ e

-f—/_’_ are cosh (2
o

3 3rr
w Ta
® —e—

Figure 2.6-3

®-L arccoshf2z
@

Minimum phase signal
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The structure of both zero patterns are nowbasym—
metrical in contrast to the symmetry found in the previous
The envelope and bandwidth character-
istics are not changed, however, since the zero count

remains the same, and they both represent the signal of

procedure

For

where the

(2.7-1)
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A substitution of the zero coordinates in
X = exp (—J'a) 2;)

and an expansion of s(t)

s(t) = ﬁ— LA - o Q"P]“tj

(=t
where ,
X = Q)(PJaJt

results in

[+ - exp Gam][1 - exp (jamn)] 1 - exp (arccoch @ x)f |

L) + X r ({_2- -1) x* —({——1) XSJI N (;_ ;7-2)

where the corresponding modulated signal will be:

s(t)

i

Sup am(t) = Re‘_fi s(t) exp wof)' (2.7-3)

where ®. is the carrier frequency.

The prévious discussion demonstrated that envelope
and bandwidth are preserved so long as the zero count is
not changed( and these zeroess can be recovered by rear-
ranging the zeroces of the modulated wave into conjugate
pairs.

If the zero pattern is modified by decreasing the
Zero count, the bandwidth of the actual signal is reduced.
One of the most interesting cases of reduced bandwidth is
that of SSB. In single sideband modulation, half of the

zeroes are suppressed. Since all zeroes are in conjugate
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pairs, only one zero from each pair can be specified in
order to determine the complete pattern, remembering
that deleted 2eroes will be replaced during demodulation
via conjugation of the transmitted zeroes. |

Let it be supposed that the suppressed zeroces are
located in the UHP. The remaining zeroces correspond to
An MP signal which is thc "zguare root" of the asymmetric
AM signal (AAM); The envelope of the half—suppressed
zeroes signal must be the square root of the MP-AAM signal
with half phase excursions with fespect to those of the
MP-AZM signals. For thi reason; the reduced -zero Mp
signals are termed "Square law single-side band" (SQ-SSB).
This means tﬁat their bandwidth corresponds to that of
conventional SSB, and the envelope can be recovefed by a
square-law envelope detector. A practical transmitter
for SQ-SSB is shown in Fig. 2.7-4. ‘Experimental.tests of
this circuit are described by Von Urff and Zoni (Von Urff
and Zoni 1962).

Now consider the case in which the modulating signal
contains an odd number of real zaroes. The reduced zero
pattern must contain an integral number of zeroes. The

procedure which reduces the zero count to a "sideband-

and-a-fraction" is called "partial SQ-SSB." An example
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of partial SQ-SSB is shown in Fig. 2.7-5.

Since the process of modulation and demodulation for
partial SQ-SSB is neither simple nor practical, no further
discussion of it is included. However, it is instructive
to examine the relationships of zero reduction, bandwidth
reduction, and efficiency at this point. It has been
showiln in Seclion 2.3 how it is always possible to force a
real signal into a wholly conjugate zero form by adding
a convenient constant. The addition of the constants,
however, results in a loss of efficiency. Anéther solu-
tion is to process the complex zeroes of s(t) through the
SQ-SSB system and the real zeroes of s(t) through SSB in
separate processes. This solution requires synchronism
and conditions of sufficiency.

In order to examine the details of SSB, let the

analytic signal representation of the message be given as

Asll] = s(¢) +_/' slt) (2.7-4)
and let the messages be modulated by the carrier

J.woé—
Aclt) - e (27-%)
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thus resulting in

A

sss5 (8 = Aslt) ALY (27-6)

"

s(¢) cos w bt - g(f)sina.zof +
4—.} [g(é] cosc‘)‘of + 5(6) \T/na)o(:] (2.7—7)

The envelope is then given by

A ees (O] = J2sie) + 287y (2.7-8)
Equation (2.7-7) represents a siﬁple sideband modulated
signal, which can be seen by noting that sinw,é and cosw.t

form a Hilbert pair and writing the Fourier expansion of

s(t) and 5(¢ as

s(t) 52 ¢ smat +}a,,) (2.7_9)
$06) .3 o cos(amt+ ) (2.7-/)
=0

Equation (2.7-7) can then be rewritten as

A (t) . g Cn Cos [(wn+ ac)t +>0hj +

5.558 N

- 5;‘ ¢, S7 [(wn* @,) b + y,J @7 -1)
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The last expression shows how the frequency spectrum of

S(t) is translated by the amount @, , the carrier frequency.:

I
ASIS_(B(“)
A
4 \
i
| * |
8w, W, W, @, w, @
+ -
-2, ~W, ) W, 2w,

Figure 2.7-6 Single-side baund spectrum of As(t)
For Wy 70

Es(a)-wc) W > W,

(w) o
susa ¢ o jwl < e,

- s

G Cdo) w < -w, @.7-—/2)
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where the USB is the upper <ideband of the SSB modulated
signal, note that the lower sideband is given by

A sss (8) = s - j3 (Y (2:7-13)
since the spectrum of A ((t)vanishes for positive
freguencies as previously indicated (Section 2.2).

S5B can then be characterized by the half band-width
technigque in freguency domain and the linear ocperation
of frequency translation. this linear operation does not

irmsly a linear change in the zero pattern of the actual

signal as it appears in Fig. 2.6-2 when the linear modu-
lating parameter vanishes. Although there is no corres-
pondence between the linear operation observed in the
frequency domain, and the zero patterns cﬁange (non-
linear) in the z-plane, the zero-locus provides new and
useful information as is shown later.

Let A (t)be the analytic form of the square wave

used in the example (2.6-5).

Alt) < s(t) + S (Y

= O o+ expjwﬁ - :‘?_exp{jwé (2.7—44)
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As the modulating parameter c¢ decreases, the zero pattern

shnows the following representation:

- 7 | [ T |

{ ) | -

| | &— A
| ¢ Coe

[} i Q Q i Q
| | )
[»

a c = 2.4% b} c= 687

| Jo | Jjo

ez» :

|

| l

| I

i ——

¢ [

| |

7 ?

I |

. (o] ° ) o

¢/ c=.378 d/ ¢=0

Figure 2.7-7 Zero pattern representation of the
analytic signal
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As ¢ decreases, the zeroes curve up and when zeroes
appear in the UHP for c = O, corresponding to the case of
the suppressed carrier, only a pair of complex zeroes exist
in the LHP.
The example can be generalized by writing, again, the
analytical signal of Equation (2.7-11) in the Fourier’

g2r¥les exXpansion

Asss“) s G+ D c exp kj‘a)f for h<h

k=n,
where (Section 2.6 "Multiplicative Models for Analytic
Signals") ¢ is the modulating varameter and ¢, ... ¢4 are
the coefficients of the expanded product is a result of
the signal factorization principle.

Whether or not SSB is a "coherent" modulation system ,
or, in other words, if the zeroes of the real modulating
signal can be reccovered from those of the analytic signal
is the gquestion that will be answered next. Looking at
the transformation itself, the answer must be positive,
because an analytic function of an analytic function is
itself analytic, and its properties of analyticity are
retained. Looking at the zero count criterion, the only
concition imposed is that the zero count must be preserved

in order that the recovery of Re [AS(QJ be possible.



: 53
According to Voelcker (Voelcker 1966), this is possible
when the carrier is not suppressed completely. The
reason given is that if the carrier is suppressed com-
pletely, the zero count and dimensionality are reduced
according to the preceding criterion. SSB-SC can, however,
be an admissiblefprocess if one can replace the lost

cerves by Viciue of prior knowledge or “"side—information. "

Therefore, SSB-SC is an insufficient process which requires

eXceedingly sophisticated techniques.

The recovery process of SSB is based oﬁ generating
’Afxsa (¢) Dby a complete conjugation of the transmitted
Zzero pattern. The requirements for recovering the mod-

ulating signal without distortion are found in Voelcker

(Voelcker 1$66).

2.8 Wideband Modulation

***** 3 for angle modulation in

T~ = F | . S T T W,
The symibol PM will be use

(o}

general, except when otherwise specified for phase mod-~
ulation.

Narrow band processes are characterized by preserving
or decreasing the zero-count. The next logical step is
to deal with processes which increase the zero count.
Classical analysis of wideband processes involvesa differ—

ential equation and Fourier expansion approach which yields
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& complicated series of Bessel functions whose physical
significance is difficult to understand. An analytic
signal representation along with a zero-locus manipulation,
however, provides a new insight into the characteristics
of the wideband process.
Wideband processes can be viewed in either DSB or SSB.

Angic modulation iu yeneral is conventionally defined as

SMICJ; (é/ = COS[C\Joé + }05 + ‘f}(é)J (28-1)

where &, is the carrier frequency, and (t)is defined as

the instantaneous phase angle. Where

w(t) = My, s(t) for phase modulation (PM) (28-2)

o

: t
w (£) MFMJ/S/Ucdf for frequency modulation (FM)(28-%)

°

and where s(t) is the modulating signal, Equation (2.7-2a,b)
can be expressed by a common modulating function Pl{s(ﬂ},

so that the new expression for Equation (2.8~1) Dbecomes:

SR TRy (53

The complex form of Equation (2.7-1) is:

sult) - = [ pon (0 e jwot] (26-4)

where

/AM(U = exP/"M{s(UJ (28-%)
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It turns out that }rM(t){ is constant; therefore,
FW(U must have an infinite number of zeroes, and they
are located at infinity. 1In other words, the expression
(2.8-4) is not analytic, and zero manipulation is not
possible. it is necessary, therefore, to evolve band-
limited analytic models that can converge to the conven-—
tional expression (Z.8-4) under suitable conditions.

An approach to the analytical representation of angle
modulation is a basis of Armstrong's method (Armstrong 1936).
The conventional phasor diagram for AM and PM is shown in

rig. 2.8-1.

§

Wt + ¢

a/ Am/o/i/ua'e modula bion

!z

)
gplU

a.)‘f(-t.f \

5) Ff?c;uen  Modulation

gure 2.8-1 Phasor diagrams comparing narrow-band
-
&
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The classical approach to FM suggested above yvields

the expression:

S_ () = AT (D) sin . + A ST, (D) i;sin (wo +2n @) b + s)o(w.,-znwm)-é]»f

M Z e )
——
Carriar ussa s a8
w

Even Orclr
+ Acz \L_I(D) -!-Slhfmc-k(zh-l)&)m 'y —sin[&),‘(zh")@dt;
vzl { = J/

ws 8 osa

————

Qdd o rder

where Jp(D) is the Bessel function of the first kind and
orcder of p with argument D as the modulation index. If
Fig. 2.8-1 .. is redrawn utilizing the different components

of the above expression, Fig. 2.8-2. results.

Im

Us§8

odd order Even order

v
\ /s
/ N 7\\/[_5 8
/
258 usa

oo"""'r

weE)
A, gy (o) wob+

Ra

Figure 2.8-2 Frequency modulation
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The analytic signal approach to FM suggests that for
swall deviations, angle modulation can be represented by
quacrature modulation (QM) where QM can be derived from
AM by-a 90° relative phase shift between the constant
carrier component and the modulated carrier component.

Fig. 2.8-3 shows the phasor diagram for the QM signal.

Im

Do

Re

Figure 2.7-3 Quadrature modulation

Tnis phasor representation corresponds to the case of

angle modulation for small deviation which is given in




conventional form by

S\ Y
(0 om
5'1'\ -,
‘)ik) Lo
[AN @
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Fa

Figure 2.8-4 Phasor diagram for small deviation PM

Tne AM of Fig. 2.8-la is described in analytic form

by

A.s,,w (t) =):1 - Bcoswtj ex/h/b,(

with 0 < 8< ¢ and w=< w,

(2.8 - 8)

The zeroes cf Equation (2.8-8) are easily found by

the techniques explained previously in Fig. 2.8-5.
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_ =TT
w

‘Figure 2.8-5 Zero pattern of As,AM(t)
The AM analytic form is converted to QM by the 90° relative
phase shift shown above.

As,QH (¢) = [1 + jaco\scoéj QXijof

and its zero pattern is:

iJo
\
ai)am-rmhé \\ —2:[(:.:\_
N\
A\ —
\\ c
N\
N\
\
N
To 2T
X!
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where the parameter B is given by ("Multiplicative Models

for Analytic Signals" 2.4):

B = cosech w |7
For B«

4+‘/'8coga)(:z exp [jscosat_] (2.8 o,

gives a good approximation to FM in case of small devia-
tions.

'The procedure for coggtructing zero patterns when the .
modulation signal is an L component real part of the

fourier expansion for the modulating signal is given by

A

- : YA N
Voelcker (Vcelck 268

~ q -
AESX LY as

L

M {S(H} - M {2” cecoslw (&-'Q%}

: Z g cos tw (% - Tfl.) for o<g/<<t '(2.8-/0)-
L=
The steps are as follows:
1. Assign 23l zeroes per period T to the Lfk
component of M-{S(U}. Let the zeroes be
located in periodic conjugate pairs within

imaginary component

e

lo, | = 1. Grcosech ¢ (2.8 -11)
lw
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Figure 2.8-~7 Construction of a zero pattern of
narrow band angle modulation, step 1

T

2. Shift the LHP and UHP zeroes PYRY,

seconds

H
m
3
+

and left respectively. The analytic signal

produced by this shift is:

AQ (¢) -.[; 1—\/% cos L w (t-t’)] exlbjfwl': Lz.s-lz)

Jo

—
( "2la

A

Ficure 2.8-8 Comgtrsctlon of a zero pattern of narrow
angle mcdulaiion, step 2
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3. Repeat steps 1 and 2 for each component of
M {s(UJ - Superimpose the zero patterns
thus constructed and multiply the/Aa(€> to
obtain:
L
Ag oy (U T As, (8 (2.8-13)
1s1 '
with a zero count of
L
ne2S Lo L(L+1) 28 -14)
{=1

and with signal deviation o<c g4
Thus the expression that allows the calculation of zero-

patterns is:

o 1

[ .
Agom = {T—] e_xP[)c{' cos lw (&-rg)} "-»"Pj n:t (2.8-15)
: Le?

op) [225 + M {S‘“ﬂ

2

n

it turns out that the last expression is analytic
uncer the condition that the phase deviation of the
actual signal approaches zero. Each factor /Q”(t)is a oM
elementary signal. /{LPM (Q), however, does not represent
a guacdrature carrier modulated by N?{S(U},, but, since
the QM modulating process is a zero preserving process,

As py (&) 1s an zero expanding process.
Pl 0
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Widekand Angle Modulation

The conventional angle modulation in analytic form
.5 defined as

INGCIARIa R | (2.8 -16)

where the message A (t) is frequency modulated by the

At - el

the modulated signal will be

() - Alt) - Acle)

s,DSp, PM

]

J.wof :}M {S(t)}
= Q

cos [co.,f + M {S (f)}] +j sin [wot +M{5@ﬁ
(2.8 -18)
The last exXpression represents conventibnal PM, but
it is designated as DSB to emphasize that the spectrum
is two-sided about w, .
Tne expression (2.8-18) shows that the‘spectrum'of
suchh a signal extends to infinity in both directions;
therefore, the shift of w, in the frequency\domain cannot

produce a spectrum containing only positive frequencies
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(Fig. 2.8-9), and the above representation (Eg. 2.8-18)

in itself cannot be analytic.

F (w)

Aoss,FM

,/HH HTM.,

Figure 2.8-9 Spectrum of Ay, (t)

It is necessary at this point to apply the results
obtained in the preceding section (2.7). Using QM ele-
mentary signals of the the type of Eguation (2.8-12), one

redefines:

and using the multiplicative property (Sec. 2.4) of asso-

ciating the elementary signal

A" (t) :T [A%N] (2.&-17)

bss , PM = ,
{=1
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It can be shown (Davenport and Root 1958, Downing 1964)

that by applying the techniques of the Central Limit

Theorem
N
2
) . S . 2 _S
//m c (J ) = Z/m (1— = >=- [ 2
N~ oo TN N — 0O 2N
1n pquation (2.7-1Y) the above property yields:

Z/h AN (¢) - exp | NLL) o i ¢ coslw (¢- ?"W
258, PM - /_T—— “p —~ ‘j

(5 2« 2n)
\& -~ <~y

f aNwt M fSW\ﬂ
n;(“U

= WP i

where n/NVN =w~NL(1L+!)is the zero count and I the ordinate

of‘complex zero in the z-plane is:

‘021 e —1—- arc cosech _CL. (2 3 - 2!)

lw N
Eguation (2.8-20) exhibits infinite zero count

{infinite frequency), infinite carrier frequency, and

infinite zero ordinates. Again some limitation is necessary,

since according to Dugundji's squared envelope theorem

(Dugundii 1958), whenever an ideal angle modulation is

forced to be band-limited, envelope fluctuation must appear.



The requirement for finite bandwidth forces N to
be finite, and the distortion problem arises. The zero

count can be minimized to yield allowable distortion, or

L

) —_ N )
ADSB,PH © - { (’ [Asl (UJ

~

= e.xpji.cat %,L(/V) + M{S(E)}J

where  (N)

. \2
sma//es[' /nlLe7ef' > L _C(_) (2.8-22)
B

and B“ is the specified distortion parameter which is
less than unity. The envelope distortion associated with

Equation (2.8-22) is:

) - , ‘
}ADSB;P,M. (|- 1< B Z cos® lw (6-1}) + oAy (2'8 '_23)
2L (=1

and the angular distortion is of the order

5'1. L -1 )
N (2.8 -24
. 3L %2} () '

(Voelcker 1966).
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Single Sideband Angle Modulation

Tne analytic form describing a SSB phase modulation
system for the modulating signal
J[M{s(t}” + jM{S(tJﬂ (2.8 -25)
Ag (t) = e
is

(6) = A(t) _€,-J'°"°é (2.8 -26)

Ss8, Fm

= [exp (— M {9(6}}>J expj (M{S(é)} + Cdoq

Since an analytic function of an analytic function is

also analytic, ASSB,FM(t) will be analytic with

iAgsa’FMi = ex{br}:— M{g(CJ}J (2.8-27)

The spectrum of. t) must vanish for w<a, .
pect Of Apy, gsp(t) o
Since the modulation function is now analytic, and thus
it contains no negative frequencies. The spectrum still
extends to infinity in the positive direction. As further

e

proof of the same property, let:

4y w, + F" () (28-28)

RN S

dt
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where A (¢) = M {S(H} is used to simplify the calcu-

lation. ©Now let

CFlt) = 2 ococwt

and neglecting the constant
[4 (‘7) = % gin wt

A

R :

Fl (é) :__&_ COJC‘)t

w

where 2 is the peak fregquency deviation.

function in this case will be:

ilEce « jFa)]

e

I

A (t)

exp [_—2—_ (.s}h wt _J'coswt)J

Z L [& e
L L () e

or

J'wof

AW s o (2) o) e vt

(z.é-zq)

(28 - 30)

Tne analytic

Q&S—BLJ
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(W)

L

Figure 2.8-10 Fregquency

wave
M adem~T A ~e .2 . e -~
PP o.s.u.\j.a.c“‘DJ.uctu . bJ.LubJ".L L._y U4l
rore established. The sketch

Eguation (2.8-3la).

spectrum of A/’(U modulated

1& analytic signal is there-
2

.8-10 illustrates

Now let: ,
f;(é): -Q cos @t
and
F-,-_(l-): -2 sinat
)
thus
Fl(t‘ = L coscof
anda @
A ((_) _ X _.____Q; _ t i = _ Fel _J.KCU(":
f wp[w ”‘F(J‘*’)J-é(’)m
Hence
A (&) ejwo - = L—f)K Q2 s ' - J (2.8 -31
f2 éo K| (cu) “F [‘/<w° e & )
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Finally, combining the real part of Equation (2.8-31la)

and Equation (2.8-31b),

J'oook oo < K
Re [ A;‘(U = ] = Z (_1) 1 (ﬁ) cos o.)o-KOJ)( (2.5 -32a)
w

K1
K=o
ot - .
RelA (6) 7] L e L. (o + k)t (28-324)
L P by

jwol ‘wyt
Asse,sm (6) = Re LAL (e < * Afz(t) ¢ J

o0 oo
= 2 A, Cos (@a - Kco)& -+ Z bn c:.::(a_)ﬁKw)f (.2-8'33:)
K=o K=o
}a(u)
} }
| l I | _
-, @, w

Figure 2.8-11 Frequency spectrum of ASSB,FM(t)
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For SSB with suppressed carrier (SSB-SC), note that

by replacing

Wse + 0(t) = ot (2'8 - 34)

Zquation (2.8-28) becomes:

A

S§8s¢c ,FM

?

(t) = g a, QOSKC«JS'C—KwC)t + e(tﬂ +

Kzo

+ Z b, cos [(coJc+ ch)(- +G(E)J (2.8 -3%)

| Fy ()

il "

Figure 2.8-12 Frequency spectrum of SSBSC angle
modulation
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The zero modil for SSB angle modulation will now be
analyzed. By observation of Equations (2.8-6) and (2.8-7),

ASSB,PM is a MP function, because its phase and the loga-
rithm form a Hilbert pair. Therefore, all the zeroes must

be in the LHP. Also note that

exp j2M {s(e)} = {ex” M {m (U}J [expj M {m™ (r)}] (28 -36¢)
and the spectrum of the righthand expression must vanish
for UHP and for w>0. The two factors of Equation (2.8-32)
can be interpreted as the USB and the LSB. Then angle
moduletion is given by multiplication in the time domain
or by convolution in the frequency domain. The multipli-
cation in the time domain of the analytic signals means
the superposition of their zero-patterns in the z-plane
(see the properties of analytic signals in Sec. 2.4). It
follows that the zero patterns of the SSB angle modulation
i1s the superposition of the zeroes of the sidebands; there-
- fore, they lie in the LHP portion of the z-plane.
By following the same steps of calculating the zeroes
of D3B, the following type of formulation is obtained

/

(Voelcker 1966):
™)

ASSB' o (t) =W [4 +J % exfj[w (¢ _T(')J (2.8—376>
(=1 { '

= [ex}o (— Mﬁé‘(t)})} exPJ.M{S(E)} . (2-3'375)
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The smallest number AQ determining the zero count

with tolerable distortion is given as

) 2 N
N > L (f&)
A
and the ordinates are given by
ol = L M (2.8 -38)
lw <

The bandwidth requirements of SSB angle modulation
are nhalf that of conventional angle modulation. This
favorable feature is diminished in practice by the fact
that experimental data does not verify this compression
Of two-to-one because of factors not considered above.
Furthermore, current methods of generating SSB angle
modulation are quite expensive. For instance, if s(t) is

a bandlimited signal as discussed previously,

s(t) - cosawl _ cos 3wt

l
2
-

The modulating functions are:

Mo d5(0) = f [coswt = 2 wsswt_} (28 -39)
Mew{s(0] = & [ernat :4’_5'”\3(»“.] (28 -40)

The parametersy ‘F are defined

')‘: maximum Phqse. deviation
Frocluenc/ devia tion

,6:
and _/é= modulalion index or FM devialion ralio
A
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For conventional PM, the zero pattern can be constructed

in the following manner. Recall that

L )
W (N
A.D.sa M (t) = [As: (U] (2.8—41)
' [=1
where

.2
. . C - s n)
NL 1s the smallest integer » L <‘BL> ’\4.8 —42)

€, is the coefficient of “|l" component real Fourier
series of modulating signal
B is the specified distortion,
L is the number or real component of Fourier series
(%) o | .
As (t) =[1 + ) LU coslaw (k- 'EL):) exp ) (wt (2.8-43)
¢
N
{
Now for the square wave Equation (2.8-35), let:

ki

B" = 0.4 ;/-_-2

and for(:i., the following parameters are found:

L= 2 CZ:'j
TL:Q-;TL CL=2"=2
c \* 4
NL= Ny 2> L (_L) = 2.2 = 20

B 0.4




75

and

Af;(f) :):1 _’_ Jco.so.th ex)oja.)&

):Agv:) (f)]N(= }: I + 0.1 Jcos Cut'-J Q)(Pj 20 0)t (2,8-44}

For (-3 , the parameters are found to be:

L= 2
€ = 3’ =4
T - 'TT' f
(L= - — <, = . = 2.
3w t I CL 3
' 2 A
NL=/%‘>L_(EL> - 2,(26 - 2
A 0.2
and
(M) .
Az (f) =[1+ _.C_Z.. ,cosaw<f..____\ ex[ojswt
L N, 3w/
[A‘"‘) * . o\ é
2 (t) = [ ’ + 035] Cos 3w (t - 3—(3)} @‘P [<XA) (2&"4‘6_)
Finally,

(~)

: 20 _
Assa,?u () =(1+ 0.1J<osw‘€) {n o.a%)'cosaau-a-':-aﬂ expzéut

(28 -«6)



The zero pattern is shown below in the Z-plane:

JT
20
(o)
(o)z . (0)z (0)2
¢
A
©f ©F ©)
20
)
T = 7T
(/9]

1
+ 4
C1lOon

gure 2.8-13 Zero pattern for conventional phase

For SSB the zero pattern is the LHP portion of the

conventional angle modulation.

of Fig. 2.7-14 is obtained.

Therefore,

the

pattern
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P
2T
T= O
[
@f ©* ©*
@

Figure 2.8-14 Zero pattern for SSB phase modulation

Note that the same result could be obtained by calculations
macde using formula (2.8-33a) and formula 2.8-34).

It is simple to follow the same procedure to obtain
the zero pattern for FM in both cases, conventional and
SSB, FM. It is also interesting to point out that the
mapping of real zeroes of function Equation (2.8-46) is
easily obtained by representing first the zeroes of
Equations (2.8-45) and (2.8-44), and then shifting to the

right the zero pattern in LHP and the left those in the

44

UHP by the quantity:

Tr

2lw
The next step is the expansion of zeroces to the N, degree

given by distortion limitations. These two steps can be
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reversed in a similar process to recover the modulating
signal (its zeroes) from the angle-modulated zero pattern

signal.

2.9 Computation Technigues for Finding the"Root-locus"

of an Analytical Signal

The development of a modulation process from zero
manipulation involves the solution of polynomial of high
order as was shown in the last section and can be
handied easily by the use of automatic computing techniques.
Bairstowe's method is used to write programs for the roots
(see Appendix A). However, even though it is considered
one of the best, Bairstowe's method lacks efficiency when
the parameters of the quadratic factors P and Q are
initially chosen too far from the actual values. An
alttempt has been made to improve the efficiency of the
method by using "Routh Criterion" and arriving at a unique
way of approaching the actual values of P and Q (Appendix
B).

This useful and efficient msthod is applied to find
the zero locus of the analytic signal representing ampli-
tude modulation as described previously. The real and/or

complex zeroes of the equation for x are used in "plot
P



functions" to obtain the graphic representation of the
Zero-locus

2= T + T
by varying the modulating parameter c. The computer
program results are given in Appendix C, including an

explanation of the efficiency this method provides.
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CLUTS PUIGUANER 5031 .. 005 100
S3COMPILE MADSEXECUTEZPRINT OBJECT «DUMP
R .
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R .
DIMENSION A(ICO)9AA(100)95(100)»\(100)
- INTEGER TaJsMaMNsCOUNTGNN.
START READ DATA
NN=N
W'R AsNEo«le
T'H T39 FOR IzN s~-1elel o0 _
T3 L ALIY=ACTY /AR e
SJECLL et e e
o THROUGH SAVEarOQ I=Osl9IoGoN“_“"mn.
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3.0 FREQUENCY DIVISION MJULTIPLEXING SYSTEMS
Frequency division multiplexing systems have been
defined and briefly described in the first section of
this thesis. The theory of analytic signals presants a
new approach to the mathematical description of conven-
tional multiplexing systems. This section describes in

- . ——

ne diffecenl FDM systems by applying the

o

Sl aem P ] P
- icLaldl o

0
Qv

gi
mocels and technicques develoPed previously. Section 2.0
covers the new concept of "Zero-locus" and its signifi-
cance when an analytic model is used to descriﬁe different

modulation techniques. Conventional multiplexing systems
ional limitations imposed by the complexity of the

previously can be applied, with certain restrictions,
(92
to multiplexing systems, such as the widely -sued systems

SSC-FM which are discussed in detail.

3.1 Subcarrier Modulation Process

The subcarrier modulation in FDM systems consists of
& modulating section in which a sequence of sinusoidal
subcarriers produced by local oscillators, one for each
channel, is modulated by the individual messages. The

modulation process depends . upon the specific type of



modulator chosen for each subcarrier. In the single
sideband-frequency- modulation multiplexing system
(SSC-FM), for instance, each subcarrier is single-sideband-
amplitude-modulated by a message. A conventional SSC-FM
system 1is represented in the block diagram of Fig. 3.1-1,

where the subcarrier modulator and local oscillator is

’y\ YN v
[P

= w A AN~ S ~1 Mla A = mnana«&-CA ﬁ‘l'vL\."v—\v"v‘w'C'v"
AN s N b dd AN . A Y \—JAC ALNS b 1% A o AAS N G de A e e

ndicated for
is passed through an amplifier K| which is determined by
signal~to~-noise requirements. The resulting waveforms
are linearly multiplexed 'into a single composite waveform,
wihich, in turn, frequency-modulates the radio frequency
carrier which is generated also by a local oscillator.

To explain the subcarrier modulation, suppose that a

s(8) = > cpoexp jnat (3.1-1)

In suppressed carrier transmission, ¢4 is zero. Let
s(t) be a two-component sgquare wave which was used

previously

S(t) = ¢+ coswlt _ % cosdwl (3-1'2) |
3 |
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and therefore its analytic form is given by

[ fwlt -1 ex 3wk 3.1-3)
exp | w T ¢ P2 {
Egquation (3.1-1), which 1is the expression for single

sideband , may be represented in analytic signal form by

As = Co + Z Cx QXPKJOU& for n,<n (3.1-4)
k=h

where G =0 for the carrier is suppressed.

The zero-locus of the analytic model as a function of
the ¢ parameter can be obtained by using techniques of |
Section 2.0. The analytic form of the actual signal again
offers the advantage of halving the number of zeroes in
the z-plane. Tnis approach to multiplexing is possible
1f the zeroces of the modulated signal can be recovered
in exact numbers, because the modulated wave is required
to have the same number of zeroes in the modulating signal.
They can be moved about, inserted, or deleted if such
manipulations can be reversed in a demodulation process.

The modulated signal in analytic form is:

Asse (8] = Aglt) exp jant .| A e)| exp jot) (3.1-5)
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where

9“) = arclan {_ i((?)J Phase modula tron c,omPonenf (3.1'6)

\As(t)&'-' Envefope. of s(t) (3'1'7)

sodulation does not affect the number of zeroes of
the original analytic signal, wnich luplies a spectrum
translation along the frequency scale to a side-band
of the subcarrier w, . The single-sided nature of the

actual signal is preserved in a synchronous demodulation

process.

3.2 The Linear Multiplexing Process

Multiplexing communication systems may be‘divided
into basic categories: linear systems and non-linear
systems. A multiplex system is linear or non-linear
according to whether the separation of signals belonging
to different channels is affected by linear or non-linear
“ilters. The conventional frequency and time-division
multiplex systems fall into the category of linear systems.
Maltiplexing is a linear operation in frequency
division systems, and it reduces to simple addition of

the different channels in the frequency domain. There is
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no overlapping of adjacent messages in the frequency
domain if appropriate selections of subcarrier fregquen=-
ciesvfor the individual channels are made. The multi-
plexing signal resulting from this linear operation is:

1]

Z mi(t) = m (t) +m, (E) + .0 m, (t) (32-1)

(=1
A power amplitier K{ 1s included for the (fh channel,
because of the parabolic noise spectrum that appears at
the receiving end of the modulated carrier when frequency
modulation is used for the carrier (SSC-FM) (Fig. 3.1-1).
The parabolic form of the noise spectrum Sn,ma({) in

M systems is given by (Downing 1964)

( 2t 7 f<p
- os s
Sn,FM (F) = A* <3'2'—2)
o f>e i

where K* is the IF noise spectral ‘density for f»o and
A 1s the signal amplitude. 1In SSC-FM multiplexing, each
of the message-channel bandwidths B8 is ordinarily the
same B, and 1is much smaller than the total baseband

bandwidth as indicated in Fig. 3.2-1.
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Figure 3.2-1 FM bassband noise power spectrum

Tne power amplifier K, gives the necessar pre-emphasis

0

K

to the ¢ channel for an equal per channel signal-to-
noise ratio over the entire baseband of the carrier. Thus
for SSC-FM systems, the linear combination of the signals

is of the form

m{t) = Kym, (t) + ...+ Kym, (¢t

= 2 K¢ mg (b)), (a,?_—?»)

The non-overlapping condition imposed by the defini-
tion of the linear operation preserves the zero-pattern,

SO that the total number of zerces is preserved. The
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density spectrum appears over the entire waveband as in

Fig. 3.2-2.

L £, (W)

- 3w, -2co ~Co Wo 3@0

) _
!.r” .nl!!l '“h'; i ]!Itl

.

Figure 3.2-2 Density sprectrum at the outout of the
nixer

Let an individual z-plane be defined for each signal with
its zero-locﬁé theoretically independent (crosstalk and
channel interference will be considered later). After
multiplexXing, each modulated subcarrier has its own
z-plane containing the zero~-pattern information of its
criginal signal. The relative position for each zero-
pattern along the multiplexed channel is given by the
phasors vy, v,...vy that rotate counter clockwise with

phase angles w.t 2w,t nw,t respectively.

, e
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gl

Re

Figure 3.2-3 Phasor diagram for multiplexed signals

Each phasor V| occupies a sub-space];a subset of a multi-

. . - . N <
dimensional signal space 4.

Figure 3.2-4 Geometrical representation for linear
signal-space
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In applying the geometrical approach, a linear set of
signals such as ‘V;:corresponds in the signal ‘space to a
linear manifold Zi‘. ,» Wwhich is a linear subspace of z .
Straight lines and planes are linear manifolds in three-
dimensional space. It is impossible to visualize a multi-

dimensional linear manifold, but its properties can be

vy el
-

A A
davs e s

Fig. 3.2-4 shows the geometrical representation of
two sets of signals, £, and 2,. If the subsets Zi are
linear and disjoint, their representations will be straight
lines passing through the origin of the system of co-

— -
ordinates defining the ¥-plane. Assume that the plane £,

is specified in terms of two vectors with components

(a. a a., 4. ) and (a,. a qa.. a,,)

Vad 0 Yeq D3 e T T g 3wy XY

and that 252 is

similarly specified by two vectors with components

(a.y Q,, ,Azz , A,y and (a,, a ,Gs4 , Q). Form the matrix

Ay Ly Qg C‘,q
Q o] Q.3 aza
a - 21 N (3.2-4)

(=Y Gy, Gy Ay

aq/ Gy a ¥3 O&Q '

L. -

whose columns represent the vectors in question. The
first two column vectors may define the z~plane of
complex zeroes for the signal vy (t) contained in the signal

space Z, , as the third and fourth vector columns do
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for v2(t). The zero-pattern combination of the components
vl(t) and vz(t) lies along the vector space V. The zeroes
of the components Vl(t) and v2(t) in the composite z-plane
yield information about channel limitations, to include
crosstalk as is shown in Section 3.5.

in geometrical terms the linear filtering required in

TRATNAA ey de
- AL QYO

et T R e Y Ut |
Sl e 2 A-\.;L.JJ-\.—Q\.—LA\-&-M

TNy
Fe)

A A
Cowwa

ol aloly ng the received
signal v(t) on the plane X, along 22 ., thus yielding
the signal vl(t) in channel one. This transformation is

given in matrix form by

) / \
V, = W4 v \3.2‘5/
where %G is the matrix representation of the impulse

respone of the filter. The elements of the matrix

are obtained by the general expression.
( j) Z Aix axJ C3'2-6>

A;; 1s the general element of the matrix a, and au
is that of the inverse of a. The operation (3.1—5) can
be periformed, and the message recovered if the signal
spaces Z, and Zﬁ_are equally dimensioned. Fig. 3.2-5
shows the case in which v cannot be extracted from

vy o+ v, because the sum of the dimensions of Z, and 22

exceeds that of Zi .



Figure 3.2-5 Case in which signal spaces Z, and Z,_
are not equally dimensioned

The conclusion that stems from the above discussion
(other important considerations such as distortion and
crosstalk are considered later) is that the bandwidth of
a linear multiplex system cannot be compressed. Ir
words, 1f the n channels have the same bandwidth, and the
bandwidth is equal to W, , then the total bandwidth nec-
essary for the common channel cannot be less than the total

sum of the bandwidths of the components nWs.

3.3 Carrier Modulation

The composite signél obtained after multiplexing

rm (é‘) =z = K¢ m; (t) (3,3 -1)

(=1
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is now modulated by a carrier of higher frequency than
that of subcarriers produced by a local oscillktor.

Fig. 3.3-1 shows the carrier modulator for the SSC-FM

system where frequency modulation is used.

Y

n
.y - ™
(_Z, Rim, (d M558 - FM

CARR IER.

MOopwLATOR

| CARRIER

OSCILLATOR,

Figure 3.3-1 Carrier modulation section

Thne analytic form for frequency modulation was des-

cribed as

Agl) = exp J[M{:(Uf + jM{f(t)}} (33-2)
‘wo €

Asss,en (6) « Allt) e/

= e:M{‘S“)} [coswof + M{s(] *j";‘“~f*M{S(é).}} @3-3)
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for single-sided frequency modulation. The zero model

for SSB angle modulation developed previously (Sec. 2.8)

vields
L n)
N ()
As;e/;n (t) < l] [’As¢ J (3,3-4)
(:4
where
A(SN) (t) . "*j f"i LOS(M(E-Tng exp_/[a)c_t (3.3 -3‘)
L N

represents a QM elementary signal. Fig. 3.3-2 shows a

scheme that uses quadrature modulation to produce AgssB, Fi.

Y

n .
ZR; M| INTEGRATIN PRODuCT ADDING L
QA by RaTme MULTIPIER
NETWIRK MODULATOR NETWORK
CARR/ER CARRIER
OSC/ILLATOR, PHASE SHIFT

Figure 3.3-2 FM modulation network
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Tae modulated carrier is finally transmitted, but
the transmitted signal is not received in its original
shape. The effects of noise and distortion are consid-

ered in the next section.

3.4 ©Noise and Distortion

Consider the receiver system. The signal transmitted
plus added noise form its input (Fig. 3.4~1). To evaluate
the effects of noise is a difficult task, but it is easier
to estimate the performance of the various systems in the
important limiting case of high signal-to-noise ratio.

4 RO 1
L3S Tal &éid

ciencies of various schemes of multiplexing
are compared on the basis of their signal-to-noise ratio
(SNR) in reference to that of amplitude modulation systems.
The SSB systems are chosen for a detailed study of
distortion.

SSB systems require synchronous demodulation, which
1s merely downward spectrum translation along the fre-

quency scale before passing on to envelope detection.

If the local oscillator output is:

jo o [0t e
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where ¢,§ are frequency and phase errors, the demodu-

lator output would be:

Se(t) = Re [mw (&) -g(t)] .

« S(t) cos [&f +9] - 5(t) .rin{&& ~l»9] (3.4-2}
and the demodulation is perfect when &€ and 6 are both
zero. If € only is zero,

Fo(w),, = Fs (W,
but the shape of s, (t) can be very different from that of
s(t). If & and & are not bdth zero, phase and envelope
distortion are introduced.
The envelope of an S3B modulating signal in analytic
Zorm is:

[Ag ()] < sys 550
and the analytic expression for the modulated signal is:

Assa (8) = <+ s(t) +j 3 (¢ (3.4-3)
where c represents the added carrier to the SSB signal,

Or a binomial expansion after normalizing results in

2
Asse (8, s(&) . sy . . (34 -4
< < <t

The expansion (3.1-12) is valid for (Voelcker 1966)

\.zcs(t) - ]Am(f)lj <ct
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She)

¢

Therefore distortion is represented by the term(

and the following equation holds for distortion and

large c:
Ao (), . st (3.4-5)
C C

Distortion reduction is achieved at the cost of power.

Tne distortionless signal should be

s(t) - ee[As(t)] Ay] cosg (e (3.4-6)

and its distortionless envelope }As(Ulcan be recovered at

the receiver if ?ﬂ)can be generated at the receiver

from |As(t] .

The single-sid
given by the Equation (3.4-3) representing the informa-
tion signal requires the absence of zeroes in the UHP;

moreover, the function must vanish as z-—»oe for T>o0 .

The logarithm of Equation (3.4-6) is

b (As(E) = | Asl)] + o) (3.4 -7)
and

p(0 < H{tlal] 64 -8)

when (n]As(U( is analytic, and s(t) is a minimum

pnase function of the form

§(t) = !AS(U{ cos {H{(n lAs(t)B} @'4"6)
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The function Ln]As(zﬂ is also analytic when A_(z) does
not have zeroes in the UHP. This obstacle is easily
removed for SSB by adding a constant c fo insure a

balance of zeroes in UHP. This yields

Ave (8) = c + st +j3(¢) (3.4-/0)
and
(n A, lt) = e+ In [4 + Ain ' (34-1)

Since A (t) is Fourier transformable, it therefore

vanishes for 2 -»o and,

lim kA, (2) = lnc for T30 (3.4-12)

2 = oo

The above expression is normalized as

lim (n [AHP(Z)} = o T>0 - (3.4-13)
Z2=o=el C J

-

-and all of the conditions of analyticity are now satis-

fied.
- The results obtained above are summarized below:
l. The real part of an analytic signal can be
recovered solély from the envelope of the
logarithm of the signal. " This satisfies
the -condition of analyticity in that the
functioﬁ is free from zeroces in the UHP,

and it vanishes as Z2—="°for =0
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2. The signal must meet the conditions given
in the item above.
3. The logdrithm of the signal can be made
to satisfy the condition in 1 by normal-
izing it with respect to a constant c.
The normalized analytic signal that satisfies the
three conditions aud is thcrcefore suitahle for a distor-

tionless envelope detection is

SO Awe [ \Anpce)l} )
1 +-'¢’ =-—c i{H‘[j — (3.4 I4a)

Tne above procedure defines envelope detection plus
post detection processing and has been called
"asynchronism" SSB (ASSB).

The phase function associated with Equation (3.4-3)
is ‘

Pup (£) = archan Sy (3 .4 -14p)
' <+ s(€)

and requires that c+ s () > o Equation (3.4-15) and thus
v, (t) varies for
o< ?471'/2 (3.4—/6)
Voelcker (Voelcker 1966) gave some practiéal details
of an ASSB, including an AASB "converter" to process the

envelope output of a conventional high quality receiver.
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s(¢)

Figure 3.4-2 ASSB receiver with ASSB converter

The ASSB converter is shown in Fig. 3.4-3 and performs

the operation indicated by Equation (3.4-13).

Ayp,sse (U

c

i ln AMP“)

DELAY

EQUALI2ZATION

Figure 3.4-3 ASSB converter

HILBERT

MULTIPLIER

TRArS FORM
NET WORK
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The delay equalization compensates for the inherent
time delay of the Hilbert transform network in the lower
branch. . The theoretical implementation of Equation
(3.4-14) in block~diagram form is quite simple, but.the
experimental realization is more difficult. The same
author (Voelcker 1966) gives an exXperimental ASSB converter
that makes use of:

a) SSB filtering to effect the Hilbert
transformation.
b) Strong carrier injection to guarantee
low deviation phase modulation.
c) Frequency multiplication *o expand the
phase deviation.

d) Sychronous demodulation to effect both
multiplication and cosine function
generation.

The cost of distortionless detection as mentioned
above is quite expensive. Once more it is necessary to
cetermine the minimum distortion required and to indicate
how this must be achieved. This problem is solved by
using optimization techniques. For example, to approxi-
mate the ASSB converter of Fig. 3.4-3, a square law

A

envelope is used to eliminate the term S 4n Fig. 3.4-4.

2
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Note that

C 2 c

H{ln ‘_A__ﬁ)_’} : H{f !Am(t)lz} R

and therefore

a N2
Ano (8) i{l—4$ | Ave (8] H oy, sW +{c‘?..c"‘ :.,"’;:j
2 [

c c*

so that the approximate network (similar to that of

Fig. 3.4-3) that gives a reasonable distortion is:

|
! DeLAy
, EQUA LI ZATION
2 HILBERT T
A_"Mm(t)l) (
3 = TRANS FORM =1H
L o< U 2
NVET woR K - .

Figure 3.4~4 Distortionless envelope detection
schema '

The efficiency of AASB is defined by

T T e T Y ——y

/e sideband power (394_r0
total power

If s*(¢Y is the average power of s(t) across 1a

resistor

. e[ = 5509 - ;L/T,sz(e) .
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and the sideband power is:
e (A% (8] < el(sw vjs)]
sefew we(3)] welso sy

but, since S(t = H{S(tJf , from the properties of

Hilbert transform (see Seciion 2.1)
e[2) - ¢ [s’((‘.)]

E [:(t)g(t)J =0, (3.4—/8)

E[Ais (&)] = 2E[s‘(t)] -2 s:(¢) (3.4-19)

The total power is given by the power carrier plus that

of A (t):

T
P(t) =1_/ Gelt ¢ AZ(t) = & 4 2 s (Y
-

and
2 s¥¢t @.4 _205)
- et + 2 S¥¢)

DASSE

For conventional AM systems, the efficiency is given by

signal power = AZ(t) = s*(t)

B

total power = A (t)+cr = s*(t) + &
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therefore,

7AAH = —S—(U____ (3_4 -2@

<t o+ sHY
O2 a comparative basis for the same s(t) in both systems,
the following expression holds:
DASSB - 2 DAAM‘— ' (3'4_24)
P+ Dann
Thus ASSB has an efficiency ranging between one-to-two
times that of conveﬁtional AM.
Noise consideration in ASSB involves complex nonlinear
operations when noise is present in the demodulation
operation. For the case of high SRN: f% >7 , consider

the additive noise confined to the spectral band of the

ASSB signal. The signal-plus-noise combination will be:

o= [enste)ente) «j[ 3R] (34-29)
If
c+slt)+n(t) o0 for S 55 | (3.4-23)
N .

then for high SNR, the received ASSB signal is essentially
zero-free in the UHP. At the output of the ASSB converter,

supposed linear demodulation will give:

AS (&) = 4 4 [S(t) +);,(UJ

C



110
and the signal-to-noise ratio at the output in terms

of the analytic form will be:

-

() CERt () it (¢)

—

N
ovr, 558

SHM,%%JI —_—
< s> ) [44’ e . C+[S(t)4h(‘Q] _c“-rcht)*m) (344-2@

When the noise is strong enouch to cause
Re [gqmpm (U] to be negative for a significant
portion of the time, UHP zeroces will occur in significant
numbers, and non-linear distortion will appear in the
output. The distortion will fall within the s(t) band-
width, and it will tend to concentrate in the lower
region of the band. Note that although a qualitative
description of weak SNR is mathematically and theoreti-
cally clear, it is difficult to evaluate it guantitatively,
and only an experimental study yields definitive results.

In FM systems the same technique is used to calcu-
late the ¢fficiency. Tae AM system is usually chosen to

be the reference comparative system. For FM systems,

s (t) = A cos [wa(t) + Mif(f)U
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and the noise affecting FM is the n<(t) component of its

1) 2

Figure 3.4-5 Quadrature carrier noise'representation

quadrature-carrier noise representation in phasor~diagram

form (Fig. 3.4-5), and its contribution to output signal

Sh(t) = A Si'n [wot + &(t)J <34-25)
where '
(k) <= tan”' hdt) , (3.4-26)
A

The signal at the output will be:

‘SF;\«,n (¢) = sin {on+M{{(é)} + 6(t) + (f)] (3.& -7_7)

There the same difficulty as discussed previously appears
when the analytic representation of FM systems 1s calcu-
lated. 1If the method previously presented is applied,

a well-known formula is obtained:

G =28

(34 -23)

2|

)ou‘r, AM
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where @ is the deviation ratio.

3.5 Crosstalk

Quantitative theoretical studies of crosstalk using
analytic functions have not been done until recently. When
two or more information channels are multiplexed, crbss-
talk results. The input-output relationship in a system
1s given by

" :
o = &, + aze’f + e+ A€ (3.5-—1)

in which case the system will be linear if a,...a,
are constants and all but «, are zero. The non-linear
Equation (3.5-1) generates new frequencies, as is shown

for a single input of the form

€, = cosaw,b + cosaw,bt + ... cosw,t (3s-2)
where w,_ ... w are the subcarriers of a multiplex.

The output of Equation (3.5-1) is:

A
e = Q, [casw..f i-coswz('&...-o-cosw,,é] +az[cas"w‘t+cos Wbt +.. ¢
+ ws'w,bt + 2cosw b cosw,t 4+ 2cosw, cosa b v .+
' 3
+ 2cosw,,t cos wno’:} + ag[a’sa w,t . cos w, bt +
* ¢ ¢ ¢
+ 3cos w, b cosw,l +...4 6cosaw, bt cosw, bt cos wab v+

el Jeval ]
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The zero-pattern representation is much more useful
for analysis of crosstalk than the other systems which
require use of the complex expression (3.5-3). The

problem of crosstalk is reduced to the problem of finding

the ;nterferencg‘gz zeroes between adjacent channels.
The location of zeroes gives a measure of crosstalk,
because a relative measure of how much one channel affects
the adjacent channel for a specified bandwidth of the
subcarriers, and the effect on each subcarrier is of
interest.

Crosstalk will appear in zero-pattern representation

ot o t4

] = 0oy
4di  deiav i

S

2

of zerces from s

nal space 2>, , as is

3
Ed A—.’ L

(9]

o
=3

0

oy
<o

[S

shown in signal space Z, in Fig.3.5-1.The case

Figure 3.5-1 Linear signal-space representation for
adjacent channels
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presented in Fig. 3.5-1 cannot give crosstalk, since the
straight lines representing the subset's.z,,zz mean that
they form linear aﬁd disjoint signal-spaces. But when the
non-linearity of a filter is introduced in one space
signal 2, ,Z, this will no longer be the case, and 2, and

Z , are not disjoint, or crosstalk results.

Figure 3.5-2 Effects of distortion in signal-space
representation '

The points (zeroes) in the z-plane defined for each subset
21') Eizare determined by a tensor or "psuedo tensor,"
since this is the "space-temps" of.Minkowski (Lichnerowicz
1962).

According to the fundamental theorem of the tensor
calculus, if the components for the tensor considered are

all null for a point in the defined space, the same
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components remain null in any other space. This theorem

suggests a solution. The signal defined in its signal
spacé and by its time vector space will have a aefinite
shape with real and ccmplex zeroes where zero denotes a
point of zero components in its space. Therefore, it
should be zero in a new system of coordinates defining a

‘ . .
new space., For example, if A~ is a tensor twice contra-

variant
‘Y ¢ J .
= .__a_y_. Dy A“(g {or > 48, t,J=1lzl n
ox¥  oxP ,
if
Aq@ = O : ,[cr ol o /5,
and then '
A"'J =0 ' ‘ for all L',j

Tnen once all the zerces of a message in analytic
form are found, their transformation into a new space
(next message) must preserve their characteristic of null
coordinates. Since a psuedo tensor is under discussion,
the change of coordinates into a new space is realizea
through the Jacobian of the transformation. For example,
the tensor g4d , once contravariant in é system of
coordinates y, is changed into ,Aq, that of X coordinates

through

Ayt oy < TV 20 A% e e, L)

S x*

for i« 4,20
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where Jwis the Jacobian of the transformation

7o | 2x (W) ‘
| 57
If the Jacobian of such a transformation (say from &,

space with X, ) is the same and coincides with the Jaco-
. ) o l,-

bian of the transformation J" for some zero from =,

space into Z; . 1t means that both zeroes were in the same

—d - - " "
Celion or CXCoo-

signal space, and itheifoure ain "inters
(4

48]

talk"” (in terms of communication) is found. Repeating

the operation for each zero of 3, into 2.,and vice versa,

the common zeroes are detected and their "relative density"

gives a good index of crosstalk.

real zeroces do not contribute to any amount
of power; therefore, no noise is caused by
the "inoffensive" zerces.

2. The testing of complex zeroes is reduced to
calculating the Jacobian of transformation,
that in the case of specific psuedo-tensors
under consideration, it consists simply of
a matrix formed by elements of sihes and

cosines, is easy to carry out.

W = wex'ﬁhf o f Jacobian =+0,1,. . n
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3. The calculation of the matrix of transfor-
mation is performed easily by using
calculating techniques that are really
efficient.
The method proposed here can be favorably compared
with that carried out by conventional techniques once
the abstract concepts of "signal space" and "“tensor of n
dimensions" have been understood, the application of

the more general theory always yields simplified results.
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4.0 TIME DIVISION MULTIPLEXING (TDM)

Time division multiplexing accomplishes a multi-
channel transmission by representing the continuous input
messages in sampled form. Each sampled-message channel
occupies the entire base bandwidth rather than a desig~
nated part of it as in the FDM system.

Time division multiplexing, therefore, combines
several message sources serially in the time domain and
transmits them in parallel in the frequency domain. This
"combination" of messages in the time domain is accomplished

by a commutator. Tne commutator performs the functions

e v~ A o am e

cf samp and time seguencing. Only
needed to transmit all messages on one channel. At the
receiving end, the "decommutator" reverses the operation
of combination in a synchronized manner with the commu-
tator, and the sampled messages are separated again into
different channels. Each message waveform is then pro-
cessed by an interpolating device that reconstructs a con-
tinuous waveform from the sampled messages (Fig. 4.0-1).

A wide variety of message representation schemes can
be used for sampled-data TDM transmission: pulse amplitude

modulation (PAM), pulse duration modulation (PDM) , pulse

code modulation (PCM), pulse phase modulation (PPM), etc.
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L] e

i ¢ sampled

i /].’\!\ /r\{\, my (€)

—l 4 I l — mz(t}

l ¢ sam /aled

I ol

<
(g ]

Mol h'/.»/ex

Figure 4.1-1 Sampling operation verified by

commutator
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The conventional TDM systems commonly used are included
in this work. The variety of schemes is, however, almost

unlimited.

4.1 Sampling

The continuous message waveform is "sampled" at discrete
intervalsbgenerated by a switch or sampling gate. The
sampling gate is introduced in series with the continuous
message. It is usually open but is closed at short, reg-
ularly spaced intervals (Fig. 4.1-0).

The maximum sampling period, or maximum time between
two switch closures so that no information is lost, is given
by the Shannon sampling theocrem, which states that no infor-
mation is lost if the sampling period is at least equal to

or less than twice the highest period present in the

nessage (Downing 1964).
Consider a time function x(t) that has a Fourier
transform F,(w) . The relationship between x(t) and its

Fourier transform is given by

x(t) = 1 /oo,:x(w) %Y (41-1)
21 | '
or
* arf
X(t) =//—“,‘([) e’ f df (4,4-2)

where R (f) has been written for brevity as F;(?w{)
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If Fx(f) is zero outside the interval -W<f < w

w

' £

x (¢) / f(f) ! (u1-3)
-W
now for t -_2_ , the period of sampling
2w
W .

mn

x (..”'__) =/ Fx (f) e’ / df (4.1~4)
2w

-W

Since Fx(f) is a periodic funciion, it can be represented

through a Fourier series expansion in the interval-44<f<ﬁv

;_;{f) =Z <:,,A<2,J'nﬂ‘/[/W (4.1-5-)

where ¢, , the Fourier coefficient is defnined -

SR wa (#) evj‘nn//"/ df (w1-6)

2N —N
Therefore,

__/ < (f) e -,,. df («.1-7)

o

and Equation (4.1-4) can be written

xéﬁ_) =2we, «.1-2)
2w

Hence .all the coefficients of the Fourier series expansion

of the transform F_(f) are specified for the interval

x

“Ws)[s*w
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Therefore Fy (£f) is itself specified, and x(t) is deter-
mined through the transformation

o0

x(t) 1/ FX(I[) e‘—jznh{tdf

It follows that sampling a signal at a rate of at
least 2 W samples per second does preserve all the infor-

mAation contained in the original continuous waveforn.

4.2 The Process of Interpolation

The process of interpolation is defined as that of
reconstructing a continuous function from a set of sample
values. The process of sampling a continuous function
vields a sequence of discrete instantaneous samples.x(é%»
of the continuous function that is ideally bandlimited to

W cps. It is desired to reconstruct the original func-
tion x(t) with the information available by building up

a continuous function X,(t) which passes through the
sample values x Cﬁ_)and represents the function x(t)

2w,

between samples as accurately as possible.

2w

x4(t)=§ "(‘;7/) u<t__”'_) (42-1)

n=-00



124
Tne interpolating generating function is u(t),

defined as follows:

W) =1

“© e’z__) = 0 for n # o0 (4.2-2)
2W .

Through band limitation considerations

F“[f) =0 for |7[[>W (4.2—2q)
The Fourier transform relationship for the interpolating
generating function s,is:

W c2rrf
« () / £ & (.2-3)

The. expansion of Fu(f) in a Fourier series in the
interval -Ws f< W gives

Blf) « 5 awdd T & 2-4)

Kz =00

therefore,

“ |

the integral vanishes except for »+k = O

K = = 00

oo w
P ; '!') )
:w) =Z‘a‘/ewm? oz of @-2-9)
-W

“u (é%;) = 2wa_, <§,z~§)
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According to Equation (4.2-2), the values of the last

expression for n = 0, 1,2...are:
A, = 1
2w
dn = O for ngo

The Fourier expansion of F,(f) is thus given by

Fo (f) = 2_

2w
and the time domain u(t) is:

@ (¢) =1 _ weﬂ”/t df

2w /1,

sim 2wk

(4,2-7)
2m w it

The specified function tha*t satisfies the condition of

_interpolation is found by substituting Equation (4.2-7)

for Equation (4.2-1):

oo (:__"'_.)
t) = n s 2w ( 2w 4.2 -8)
X:L() héwu(zp\/) 2T|_W((__ n) (
2w

Tne representation of x,(t) and w(t)are given below

(Fig. 4.2-1). The method followed is usually called

minimum bandwidth interpolation. Other interpolation func-

tions are the step-function interpolation and polygonal

interpolation. A detailed analysis for determination of.
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Figure 4.2-1 Minimum bandwidth interpolation
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interpolation error can be found in Nichols (1956).

The interpolation-generating function can be

regarded as the impulse response of an interpolation

filter of bandwidth B.

4.3 Zero Representation of Pulse Amplitude Modulation

The fundamental operations involved in time division
systems have already been discuésed. Now the new approach
Lo TDM systems will be introduced by means of analytic
signal representation.

According to the symbols used in FDM to distinguish
between the real and analytic signals, the actual signal
in pulse amplitude modulation systems can be represented

as

Soan (0 = S(8) p(Y) | (42-1)
where s(t) is a bandlimited modulating signal, and p(t)
is a periodic pulse-train carrier, Spam (t) corresponds
to the pﬁlse amplitude modulated signal.
The zero representation technique has been discussed
thoroughly in Section 2.4, Since pulse amplitude modulation
is a product process, according to the properties of the

zero representation for analytic signals (Section 2%} its
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zero pattern is simply the superposition of the zero
pattern of the information and of the zero pattern.of

the pulse. Consider the following example:

s() = 5 _ cos wt (4.3-2)
4
=3 _ 1 G_J 'e : (4.3-5)
P 2 Tz

Following the same procedure indicated in Section 2, a

transformation is made to the complex z-plane by replacing

t by 2=T+ )0 - (#3-4)
‘(A)Z fwa
5(2):§_ —j—QJ _ _’_Q'I (4.3 ‘5-)
- P2 2 .
now let x = exp jwz
S =8 _x _ 4 _ Sx -2xt-2 . @-3-6)
4 = 2X X

The zeroes of s{x) are found by solving:

3

-2X + §x -2 =0

The eguation has two roots, which are:
X =2 Xz=4_

2

Now to produce the representation in the z-plane
Xy = epjw a,

Xo = expjaz,
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so that
= -3 lnx, -4 =..J lnx
1 4 2 2

<

Replacing the values found for x, , X

Z1=-.‘.’£.(r\'?. 22=it;nz
x) ‘ )
The real signal s(t) introduced as an example presents
two coumplete conjugate roots in the z-plane with imaginary
components only.
Let p(t) represent'a periodic pulse train with period

where T =.%? . The pulse consists of an ideal delta

oﬁl -3

function & (t) band-limited by an ideal filter. it is
possible to obtain for p(t) a representation of zeroes
distributed on the real axis (Woodward 1953). This
representation is shown in Fig. 3.4-l1b. Since the product
cf the two signals s(t), p(t) has as its zero-pattern, the
superposition of the zero-patterns of each s(t) aﬁd p(t),
the zaro-pattern representation of the modulated signal
S o (8 will have the distribution:that appears in
Fig. 4.3-1c .

The zero-pattern representation of PAM offers no
difficulties, since it is based on the property of super-

position o0f zero correspondence. The sampling function

can be chosen according to the actual signal to be
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transmitted; Different classes of pulses can be used,
and cdifferent rates of sampling, and narrower pulses. The
superposition property will give in each case the config-
uration of the zero pattern of the modulated signal by
simple superposition of the zeroes of the specific pulse
used with those of the modulating signal.

The problem associated with the zero-pattern repre-
sentation of PAM systems consists of the difficult
problem of identification of zeroes of the modulating
signal from those of the carrier. No further study has
been conducted in this sense, and the utility of such

is under discussion.

4.4 Crosstalk Considerations in TDM

Interchannel crosstalk arises in time division multi-

plexing systems when each sample is not confined to its
assigned time slot. The limitationsof bandwidth and the
non-linearities of the transfer characteristics of the

common. transmission path will cause each sample pulse of

the PAM time-multiplexed signal to overlap the neighboring

time slots and interchannel interference will result.
Only the interference caused by band-limiting is called
crosstalk. The amount of this crosstalk is dependent
upon the upper and lower cutoff frequencies of the

transmission path.
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a) At the upper cutoff frequency, alteration and
phase distortion will prevent a pulse of one channel
from decaying to zero before the .time at which the.gate

of the next channel is opened to receive its pulse.

Figure 4.4-1 Interchannel crosstalk in TDM system

If a low pass filter is chosen as a model trans-
mission path, at the end of the first slot the crosstalk

1t 1S:
voltage is .- vap(--fz) (4.4 —1)

— AW\ y
' R

[

A o
7 L.

Figure 4.4-2 Low pass transmission model



where R,¢, is the time constant introduced by the
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characteristic function of the transmission path. Con--

sider the adjacent channel number two; the cross voltage

is found by letting

-6": 'Z'ﬁ"'A

where there is the assumption of some interval % between

channe.s, and A is the time interval of crosstalk.

Therefore,
v v ( ’l"5 + A)
t = Q-XP R, C4

The crosstalk ratio is defined by
Vi ( Tg*'A)
TR = — - e’(P -
R, Cs
or the crosstalk attenuation in db

(err), - 8696 Tot4A
R, C4

N

b) At the lower cutoff frequéncy:

s, (¢t

Ay

iy

—

]

Figure 4.4-3 Crosstalk due to insufficient low

frequency transmission

(g

(ws-2)

(44-3)

(4.4-4)
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The same calculation, taking as a model the high pass

filter as model of transmission path, yields for o<t<(rrg)

H ==

& b ke

| 1

Figure 4.4-4 High pass transmission model

el gl e el ) e

»

This equation (see Fig. 4.4-3) expresses the value of Vie
when applied as step voltage at t = 0 and a negative step
voltage cf the same amount at t = %9 . Equation (4.4-5)

can be expressed as follows:

¢ :
Vﬂ' } V<1 -exP(;C;D QKP (_ chz) for b<r

Let t =7 vf3~ to evaluate the crosstalk in the interval

of overlapping slots

vl (5] o (5 =
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c) Crosstalk due to the non-lineqrities of the
transfer characteristics of the transmission path:
Consider the Fourier series representation of the
unmodulated pulse train

Nt

= T T T
P(t] =2 |14 ?_Z -—-——-———-———C.OSVI(wot-——_-‘-_— (4,4-7)
T : et n T
T
Let s(t) = 1 + Myy cosw,,t Dbe the modulating signal

o? frequency «,, . The modulated . signal is

o0 A
Sin T nT
SN f—_ +
Soam (f) :I_[AHM...co:wmf«-ZZ co (" T)
™ o nnT
hE T
.o T
o0 §m -
P My > T co:[(nm;+w,,,)(:-i'_'_f]‘-
h=1 nTt T

+ cos [(nwa—wm)t - "T"".]} | (44.-8)

where Mg is the modulation factor.
When the train modulated pulses are applied to a

network with the transfer function

-i0(w
Hiw) = Atw) e J )
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the output will be:

ﬁs“) = Ao + My A(wm) aos[comt’+ 9(wm)] +

"
T

nTY

oo .
Sin 5
+ ?-Z T CO:[VJC‘)0£ . bt f9(“wo)]+
T

n=1 nmT

—
R ., hotv
S Ik o \
+ MAM Z A(no, +wm) ~_.;_ cof (mw. *wm)t -
Nns1t ﬂ—r
T
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—_— i._ : t <
| [ | bj
t
rT __l D ﬂ
. " e)
' ¢

Figure 4.4-5 Pulse amplitude modulation

Figure 4.4-5 shows the modulating pulse (a), the AM
pulse (b), and the demodulating pulse (c). Note tha the
output pulse is demodulated starting at a time t = kT |
after the start of each modulated pulse. The "gating"

process is defined by

FRONE jsﬁdfjtu (4.4~ 10)
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where
16 (t) =0 For KT>t >0 and T»>t >kt +)
fj (t) =4 for KT+T> t S>KT
Therefore,
> sin -ET T
;j(f)‘-' l 4+ZZ ! cos (a@.t - an — 'Lﬁ'nk &4"‘4"”)
T 3_-4 gﬂ-'( T

The gated signal 94 (£ is demodulated by passing the
signal through a low pass filter of cutoff ffequency
w, < “/, . The expression for the demodulated

frequency will be:

2 2 /

?j({-)‘ = Ao(-})\ + MAH <;) OOSCOM(TKA(“’;") 00.(9((‘0'") +

[ i NOT \2 r ’ -
+ g ( m__: ) iA(nw. +co,,.) Co![ZWnk +9(nca.+wm)j_+
h=1 —_‘_— '

+ Alncs -wm) cos {211'*‘\‘( + 9(nwo -wm)} }) -

2

- Mam (I_) sin @, f‘<A (Wm) sin Q(Wm) +

-
i

oo . nTY \1 ’
-z <-ﬂ_"i) A(nw. +wm)¢in[zﬂni< +9(nw.,+-co,,,)] .

m:1 n__'l‘I ,T
T

- A(nw,s -w,,,) J‘l'n[ZT:‘nK + & (nws -MM)JQ @-tx;fz)
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The final expression for crosstalk calculated by
Bennett (Bennett 196l) for a specified bandwidth is:

nnY 2

=

Sin

1

cos 2N K

-
+
N
M=

NnTT
-

>

"

e
-

(.u-13)

b)
~

Jin

1
o
M=
(g -
3
3
~ -
—

.1

4.5 Signal Noise Ratio in TDM Systems

™17 o~
g Sy

e amplitude modulation provides a poorer signal-

to- noise ratio than conventional amplitude modulation.

This is due to the fact that the receiver is not blocked

exactly befgre and after thé pulse duration time where

the falling edge of the pulse continues. | ' =
Let P denote the average power of the unmodulated

RF pulse train; after modulation the power is increased

by %:M:"P » Where M, is the modulation inde# due to

the energy in the sidebands. If the bandwidth of the RF

signal is W , then‘'the ratio of the unmodulated input

carrier power to noise power is:

(.S'..) = ° . . ) L"'f"‘)
N ",,P.,E ho W | A ‘ ‘
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where ng = noisepower density. Since it is used as
amplitude modulation, the power spectral density of a
periodic waveform is:

Gs(“ = ilcnrg(?(”’f’J[O) : [4,:‘-2)

-0
and the total power spectrumin the bandwidth * f. is:

( ‘[_,,[) (LJ.B—’ 3_)

Tnerefore the modulated signal waveform has the power.

T
M am =3
- 2
and . -
<§) . May _P Ls-¢)
N inpul' z ne W ]

Assuming a perfect video detector, the output of the

first detector contains undirectional video pulse of mean

power not yet modulated. After modulation

nTY
= sin(
v(t) =}/P_T_ (1+ MAMJr'nw;f) 1+ 27 wsnawt
T -~

n=1 nTi %t

T @.s‘—aq)

and the signal-to-noise ratio at the output of the video

detector is:

(

i

) ) '/ZMAHP qusj.‘
ouT Cy) n, lA//z,
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From Equation (4.5-4) it follows that the low

frequency signal amplitude is:

and the low-frequency signal power is equal to
Y A M:M TP
2T :
If the bandwidth of the low pass filter is fs , where
/5 is the top freguency of the message function, the
SNR in the output is:
: . 2 X
(_S__) - ’/7_ MAM('T') P . . (4.3—_64)
N Jour "N f.f

To eliminate the noise in the interpulse, the noise

power is reduced in the ratio ﬁ4_ , and the SNR at the

output of the low pass fulter is:

s . = M (5) P _ aManP (4.5-64)
(—;)ouT(LPF) N {s 'T/_r ) h.{;
The result obtained is the same as for conventional
carrier amplitude modulation systems for a continuous
wave. But only a part of the actual signal power is used
when the low-frequency band is filtered out of the video-
frequency spectrum. Each harmonic in the pulse spectrum

has a pair of sidebands associated with it; any such side-

band can be separated with a bandpass filter, and the

—
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message can be detected with a normal amplitude modu-
lation detector, but the process described inﬁolves a
deterioration of the signal~to-noise ratio.

The advantages of time division multiplexing with
an improved SNR are found in pulse-position modulation

(PPM) and pulse-duration modulation (PDM).

1A
)
O

NETmIiTm Trtaremnl
neimum Interrel

Disregarding noise and other pertubations, the
primary function of the interpolation filter is to mini-
mize the total error.

~Denote the lowest frequency component of the sampled-

message power spectrum by S, (f/.. The higher: order

components .S,QU .S, (f) will be collectively designated as

-

Sn(f) , so.that

> s ()

(=1

Sn (f)

i S, (f- f/:) ' (4.6-1)

(=1

disregarding the effect of the spectral envelope of S, (t).

Tne model used for the analysis is shown in Fig. 4.6-1.
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ConvTinvuowg
DATA SPECrRUM SAM PLE INTEGRAL

ar £ FILeTER Y(F)

ERROR SPECTRUM

DELAy

Figure 4.6-1 Circuit finding the error spectrum

The delay is necessary for final synchronism require-

4+t

s e Ly -~ 2D T vy d
MICLL WO (=4 wlic wavic

the diagram, the power spectrum of the interpolation is:

)

Se(f) - fy(/} - exp(—jzrr,[r)iz Sm(f) + (Y(F)(‘Srn(f) @.6 —‘2)

Make the substitution

Y(f) < ;'.V(F}) exp Gjo(H) | 4.6 -3)

Thus

R 7 BN y#[s0  ee-4)

Se(f) =}}yme
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The value of the first member of the above expression is:

..J'O(F) —zrr/-'r t

A=;j}/(/)e _e

k3

=“y(f} cos6 _J']y(F)

stn @ _ cosamfr &jsmzn‘f‘t‘

_-[{{Y(H wsd - coSZW/T} - ]{]y(ﬁ ‘"hbv— §in mp}z

Calculate the absolute value of the expression under the

square as
| = ]Y({)[1+1 _2£>/(f)la>s (e(f) -zv_rf‘t)

Therefore,
Se(f) = {IY(HII +4 -2 ’Y(f)}CoS[QCH-ZTTfTJ}Sm(f)l

Fyer s ) (46-3)

K

The interpolation error power P, is defined:

R[5 (f) af e

Minimum interpolation error will be for

2R
oy(f

= O | : (4.6-7)
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Differentiating first under the integral

oR =/°° 25Uy
2V Lo D yi)

From the expression (4.6-2)

25e(f) 2self)  2y(f)l L 2Self] 26 (4e-p)
2V () 20yPL 2y 26(f) 2 yif

the evaluation of each term gives:

25 (F) - 2{)’()‘)'5'"» (7[)_ zco.f[@(fj _zrr/ﬂsm (f) + Zly(/)lS'n(f)
Sy (4)] |

P! yQ)
’gie(f) . 2]y sin [@([) - 277/*] S (f)
(f
To calculate _EﬁiiiL_ , consider:
2y (f)
y(n) -|yp) e

exp jo(f) = [Y/HI
y (f)




- [yl
& } = (h —_——— < (n (() - (n (F)
jotfl« b L alyl -y

6(F) = jlnyd —jtalyc)

therefore,

J6(F) .o

ay@ Y Y

Now the expression (4.6-8) becomes:

25(f) =[21y<f)| Sn (F) —zcos[s(ﬁ—m/ﬂ Sm () +
QY (f)

+ 2 [y(ﬂ)] Sh (%)J exp 8 (F)

w2 [y @ sin [0lf) - amf ] Salf)j 1

y )

)

Let V()= V(] exb (- j6lf))
AR VIARLA i J 4

2 Self) . 2e_j& {J YU) Sm (f) - cos [9()‘) - 2nf T] S, (#)
Ery(f) .

+ ] Y('f)l < (7[) + j.“""‘ [9(7[) = 2'7/?} S/ln //j/}

146

(@6-52)
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2 Se (f)
QY (f)

The condition is found for

[yl = cos[8 () —amja]} 50

e VY B8] o join{os) -amfr] Smle) = o

The above expression holds for
Imc‘c/l.nur'/ ['Ju'u'tl.- =0 1{0" sin {9([/‘ - 2"_:-/[7} =0
Real }oaré =0 for:

{Jy(m - cos[0(f) - zn/r]}g,,,({) vy Salf) <o (469)

with 98(f)< 2mf{r from Equation (4.6-9) yields to

YOl snly) - Smlt) | Y] s0th) =

e ) \
S (w10

(i -

Tnus, since

Y = Y@ expl-joi) =]y (sl exp (- 2mf)

<

Y(f)= _Sm(f) eszn? (4.6 -11)
Sn(f) + & (4]
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This is the transfer function of the optimum inter-

polation filter in the sense of minimum error power.

Now ihtroduce the value obtained into Equation (4.6-=5)

Se,(f) = {J Y({)]\.& 9 - zl)/(f)]co.r[@(f) - Zﬂf T‘]} SK(f) +3y(7‘))z‘5’n (f)
O(t) « z.r.f]‘

Se (§) - SH Snlf) + Sm () Sis)
(P +5n (1)

Se_ (]() - Sm(][/ :Sh [fj (4.6-/2)
Sm (]/ + S, ()

and therefore the minimum interpolation error power is

given by

oo

‘Pem-'n - / Sm [)(/ Sh (/j - d/[ . @.6 - 13)

o Swmltl + S,.(f)
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5.0 CONCLUSION

The theory of analytic functions has been used as
a new approach to the study of conventional multiplexing
schemes. The multiplexing processes involve double and
triple modulation technigues, and the most general form
of modulated waves exhibits simultaneous and envelope
fluctuations. Modulation processes can be described as
different techniques for varying the two parameters of a
sinusodial wave (carrier) - magnitude and angle, accord-
ing to the message wave to be transmitted. Modulation
processes, therefore, can be described by envelope-phase
relationships.

The phase-envelope relationships described in mathe-
matical representation prove to haQe a close dependence
on real and complex zeroes of the actual wave. The
concept of real zeroes is easy to understand and visualize,
but the concept of complex zeroes is more difficult to
visualize. However, the mathematical representation of
Zeroes is easy in terms of Fourier series, and they show
a physical meaning when related to the spectra, phase,
and envelope functions. The representation of signals in
terms of zeroes gives useful information about the attri-

butes of the signal, using the principle of factorization
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©f the terms of the Fourier sasries expansion of the
signal. Thus the zero pattern offers the advantage of

a time domain significance which shows the phase~envelope
temporal fluctuations, and a frequenéy domain interpre-
tation as a result of Fourier series coefficients that
describe the spectrum of the signal.

The zeroes of the signal are therefore the informa-
tional attributes of modulated waves. It is shown how
zero manipulation yields tb the representation of the
different forms of modulated waves. The difficulties
inherent in complex-zero representation are diminished

when a qualitative study is intended rather than a

quantitative one. It is not necessary to know the location

O zeroes with complete precision so long as the total
zero count and the relative position of zeroes are known.
Futhermore, it is always possible to recover the original
wave from the modulated signal whenever the zero count is
preserved. The important principle of a zero manipulation
allows the zero conjugation of complex pairs, and the
possibility of obtaining a modulated waveform carrier to
handle mathematically, but which shows the same character—

istics as long as the zero count has been preserved in the

zero manipulation.
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Another useful principle in zero operation is that
the zero pattern of a product process is obtained simply
bysuperposition of the zeroes of each product member. Tnis
means that multiplicative processes are the most amenable
to a zero-based description. Fortunately most of the mod-
ulation processes are multiplicative. Non?multiplicative
processes, such as SSB, because of the linear operations
inveolved, are more difficult to handle.

A qualitative study of a comparison between different
multiplexing sustems is also possible in terms of zero repre=-
sentation. Special attention has been given to crosstalk
effects in multiplexing where mathematical analysis has
barely been developed up to now. Multiplexing schemes
expressed in terms of zero operation yields a multi-
dimensional space where each zero can be mathematically
described in terms of a tensor or a "psuedo tensor" as
is shown. Tensor analysis is considered to be very helpful
in this new approach to multiplexing Schemes. In the
application of this new representation of multiplexing
schemes, difficulties are to be expected, but a strong
possibility exists that these representations will prove
to be a powerful analytical tool. In fact it has been

shown that the mathematical expression for crosstalk in
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multiplexing schemes given by tensor analysis yields to
a more practical evaluation qualitatively and quantita-
tively. Further work is needed to develop a comprehen-
sive and compact theory expressed in terms of the new

tools proposed here.
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5.1 OQuantitative Results for Multiplexing Schemes

As a complement to this thesis, the results of a
library research are offered here on the comparative
studies made by many. authors of the performance for the

different multiplexing schemes.

Table I Specifications

B = Effective noise bandwidth

fdm = Frequency deviation of the main carrier caused

-

by modulated carriers
fsem = The frequency of the subcarrier
Ky= modulation parameter

M.= Modulation index
K2= Constant associated with the second modulation

Mp= Modulation index for each subcarrier =

Table I which is due to Landon (Landon 1948) gives a
comparison between different multiplexing systems and
modulation based on signal-to-noise ratio compared to

single channel AM as standard.
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Tables IT and III Specifications

351 = unmodulated rms amplitude of subcarrier

x = positive number related to Ppy as the passing
of permissible time that an individual channel.
is switched on; (1-1/2) is uséd to denote
guard space in PDM and PPM

8 =  bandwidth required for the carrier

Pi = Dbandwidth required for the subcarriers

.Di = deviation rates of a frequency modulated radio
link

D; = deviation rates of FM subcarrier

F = number of samples for record per channel of
a TDM

Fg = video passband of a radio link

fD = maX. frequency deviation of a frequency
modulated radio carrier

fg1 = méx. frequency deviation of the frequency
modulated subcarrier

fen = max. frequency deviation of the highest
frequency modulated subcarrier

fhi = max. information frequency transmitted in
channel ~

K, = rms fluctuation noise per unit bandwidth
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constant characteristic of the type df
modulation of the (th carrier
modulation index of the radio link due to the

subcarrier
modulation index of the (th subcarrier
number of wideband pairs in the video
passband of a PAM multiplex
max. phase deviation of a phase modulated
radio carrier
wide band gain refefred to the ith channél
of a multiplex
rms amplitude of the sinusoidal video output
of the comparison single channel AM link under
condition of full modulation
rms amplitide of carrier required for video
improvement threshold
improvement thfesnold of a frequency or phase
moculated radio carrier
rms amplitude of carrier requifed for thres-
hold of ith FM subcarrier |
minimum acceptance signed to fluctuation noise

ratio in the output of the (th channel
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Table II which is due to Nichols (Nichols 1954)
gives the "wideband gain and threshold expressions"
comparing the various types of modulation and MpPX.
Table III which is due to Nichols (Nichols 1954)
gives the "bandwidth and improvement thresholds for mini-

mum acceptable output SNR.™

N A s

The symbols used by the author are consistent with
those used in Tables II aad III. Note oniy,

R} = SNR in output channel

Ry = SNR in carrier

E

information efficiency

The table due to Nichols and Rauch (Nichols 1956)

gives another parameter for comparison between multiplex

systemé. The "informétion efficiency" defined as the
ratio of the information capacity of the output signal
channel divided by the information capacity of the
modulated signal channel. The ideal value of‘information
efficiency is equal to one.

%)
)

N (1+Rl

1

2
WZ (l +R2




158

o %@ s
WGz (I F o ‘g wF £ H-hd
G s
'y ‘ —_— | Wa - WV
(e e | o | [ e
9 G ' s
.«‘ 1 . —— ———— e -
ﬂ\%@ )E: NMxS Js ¥ g FF e ..ms Wd = Wd
é e 4 s
C\mé w&N %J M: l@a g 12 W3 - nv
_QU w
F\A Py & = o ) T £ WY = W
J o e :
\A& VIJQN. 2 Ilﬂwl_.o.wl v WY - WY
k2 3
lM.i: 'yj Yz 17 ]
s e W W > W3 1sAS

(¥G6T STOUDIN) II ATIAVEL




159

3 e Ts 25\ 2 Hd - Wdd
2,4 €7 ) (Te 29)
2 D ﬂo.u m\v rA Hd - Wod
.ﬂ\\ & 0 N &\s - B
(4 YYuw
5. e- 72 mn.w 2 nvw Wa ~ W34
A G 2p
WY - Wdd
0 A\\T: ug)e
Ryt %
51 , (24) 7 WY - Wdd
y(d23)ur ‘
v, 3syshe Wd~ WGd
#37 5 2) (%% 5)
22 v = m wa ¥ WY = Wad
. - W
.F\.A .Uu v N\_ 24
y 43 Uw _
TGy &«@&N W3- Wud
ukp\‘?@ P N,
X Ilaql H\\ﬁ .\m\v 2 Wd
v, Y e
= g pNoILIqY T = loy = MW WY~ Wyd
10270 YOI d20HSTYHL STty W\mu X0 G0/ STVL  HTFIN2wD MON& W3_L W\Aw




160

TABLE III (Nichols 1954)

TY PE , V FORMULAE
AM — AM . <i) =E_:{ml./’<-§-)
k\. nm Aey ‘ N
Y3 Y2
AM - PM o= 36, =[o.7 S b (__S_) ] (i’l)
Go¢ AN |
i.*_ = 2 (F{y)% e W
k\
'2/3
Dy - [d" :[ 9.2¢ _'g-) ]
FM=- AM : i Bt Y Jut
§_! - ¢ 23 (F' 7[4(‘) 7~
|<1 a‘”-
o - 2[/-
Df‘:[o'zllg (—-F——) ) __5&.::&.:*
FM - FM gt N\ g
2 RV
[ (J‘,f. \ [ 2eifa\h
G k £
Dy _(0,29 (S) }2/3 G A L
FM - PM {3‘-"‘ N/ 3 Ky
? ¢ . /
fo = & f4 =<.5fk)/* (2/8 fa ) /s
X g
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PAM 'AM —k—: ' - (M {fm) (N)“_
TN
/ 2/
[O(nF <"{m)/"(_£)\] 3
{-‘0: TTT ﬁ N J;
PAM- FM )
S‘ = 2(ﬁ E‘D)". >
/ %
o[ )
PAM - PM b= | . )
Dy
Fe = 028 n (xF lﬁm) ('N—)‘-l_
POM-AM |
é - ch/—l
K
Yy S\
oo BT (S
PDM ~ FM )
. fD:aél"; Be10 Sk = s
y iy
Fo =o02iw h (F l[m)/; (ﬁ)‘-(.
PODM - 7P - i}
” E.D:O'G :'fn =O‘GFC 'F_‘P,
Yo fs
Fow 02xn (FL)T (_7«‘):‘&
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APPENDIX A

Bairstowe's Iteration to Find the Roots of a Polynomial

The purposse of this method is to find a quadratic
form that divides exactly an nth polynomial. Tﬁis
quadratic form contains two roots of the polynomial that
can be real, multiple, or conjugate complex, if it
exactly divides the polynomial. The problem is to find
the product and the sum of the rootsp and g. Consider

then the nth order polynomial

n n~t
][[X) = doX + a,x + ...+t a X +a,

and a quadratic form
moa x* o+ px+ g
where x and y are the two values picked as first approx-

imations to the product and sum of the two roots. If

»

the quotient f%il is formed:
}[{‘x) - «:;',,x” + a,xnd ...+ G, X ¥ dp.
m xX* . px + ﬁ
][(X) = (boxn-z ‘_bq xn-5’+ R bn-jx*bn-z)(xz‘f,)’(ﬁj) + Rx+ .8

the following relations will result:

(o}
w
I
)
w
!
g
o’
()
1
+Q
o
=




Pp = 3 - pbry - gbg.p

with

b.1

I
(@

b.2

i
(@]

p and g being only approximate values,

remaining term Ry+S with

and

le7

for x = 0,1 2...n (A-1)

S = bn + pbn_l

there will be a

If R = S = 0, then the divisor is a factor of the £f(x),

and there are two roots of the polynomial.

The basic

plan is to find an adequate approximation of R and S. A

Taylor Series expansion made and terminated the first

derivative (Newton-Ralphson Approximation)

R

f(p + p, 9+ q)

S=g(p+ P g+ Q)

substituting

and

f(p,q) +ApP

g(p.q9) +ap

2 f£(p.q)

5

S = bn + pbn—l

+aq 2 £(P.q)

°2q

q'Dg(p,q)
op



' abn ‘an—l
9(p + P, @+ @ =Dby +pby 1 +Aps4 *P3p— thbn-l+
2b
AQ[Bgn . abmd.]
p Er
Since the quantity wanted is:
R(P'q) = S(p,q) = 0,
the desired relation is:
3b b
n-1 n-1 _ -
bn—l +Ap ‘—3—5— +Ap —g-q——- = 0 (A 2)
b 2b 1
n n-1 b b
bn + pbn-l +A%ap + p 5P + bn—l} +Ag[ gn +p nglJ

then calculate the Equation (A-2) less p times Equation (A-3)

2b Jdb
n n
+ b + Ag P oA
op n-1 2 29 =0 (a-4)

b +Ap
n 4

and a new system consisting of the two Equations (A-2) and
(A-4) results.

The derivative with respect ot p and g gives the
necessary relationships between bk and ak. Therefore, the

recursion formula for the coefficient bk is:

Py = ap = pby - ab_,
2b 2b 2b
% k-1 k-2
2p P Top Pro1 @ "9 p (A-5)
25—1 - gbo - ?b—‘l - gbo = O for‘ k :‘4
2 o 2 P) {
P P i a and K =0
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Hence a new vector can be introduced whose components are

related to those of vector b by the recurrence formula:

CK = bK -PQK"l "qck_z {OY‘ k:’,z,..-") (A"-y

with ¢ = o and Co = 1

from Equations (A-4) and (A-5) follows:

gbk = - Ck-9
P er k=12, ... n (A-8)
0 bk e
- - k-2
29
then
n"z n‘j b
é)x ¥y by X 4o m-3 % "'bu-z =
-4 -3 .
= (> + px+ci) (Cox™ ™ v a,x™¥ w.. Chos X + € )+ RY 48
N~ i . v
can be written where R'- ¢,_, and S P Cn-s
Db, ob, .
sO that = = - Cn-y ’ —nt - Cn-2
29 29
an = -cn'l . , %__h:_ = —Q“-a
'Bj Qj
Substituting in Equation (A-4):
26 -
no+ E%_q = -Cny +bo, = - _,
2p
Ced = Sy - 6,4 = /O/M ~Pen-2 ’ﬁcn-a ~by.,

Ch-e = —FCA-L - icn-a




The Bairstowe iteration

of two equations:

cn--2 p + cn-3 g

c,.1 P +c

n-2 !
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takes its final form in the system

= b (A~9)

= Db (A-10)

where Ap and A p are the increments to be given to p

and g in order to get the next approximation

P* =p + AP and  g* = q+ A&q

These increments are calculated by Cramer's rule:

b)l‘i Ch.3
AP _ bn Ch-=
Ch-2 Cn-3
Cp-a Cn-2
S b"\"l
Ch- b
Aﬁ - n-4 n
Cn-2 Cn-3
Eh‘q c’h-l
Thus
’ c - b ¢
n-1 -2 -3
p = D= L. (A-11)
n-2 “n-1 n-3
b ‘¢ - c
n n-2 n-1 " "n-1
1= c2 - c c ‘ (A-12)
n-2 n-1 °"n-3
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To summarize the method:

1) Choose values for p and q.

v2) The vector A is given; from it get the components
for vectors B and C with recurrence formulas
(A-1), (A-11l), and (A-12) respectively.

3) Calculate from Equations (A;ll) and (A-12) values
of the increments; and

4) if }Ap] and qu}are equal to or less than a very
small quantity € , adequate values of p and g
have been found.

5) If not, the cycle is repeated with new values

P =p +A4p

g =4q +aqg (A-13).
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" APPENDIX B

The Routh Criterion

Bairstowe's method does not give any boundaries for
p and g. The starting point of this method actually
consists in choosing some trial values for p and q.
Therefore, the efficiency of the method depends on the
precision of the first trial. The usual techinque starts
with reasonable values for p and q; for example, p = 0.1,
g = 0.1 and follows an iterative proceudre to increase P
and g until the conditions specified in Appendix A are
satisfied.

The Routh Criterion establishes the limits of the
real part of the roots of a polynomial of the nth degree.

Given a polynomial of the nth degree

fo) o ax+ ax™ L 4 an-o (8-

with real coefficients, the determinant

AV\-;

azh_, a Y ~ §

2n-1 2Ln-n

is formed.
The Routh Criterion says that when the sequence of

determinants for all n is positive, the roots of the
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polynomial are located in the half plane.

Let m(x) be a polynomial of the second degree

M(¥]=x2+P)< -f—a
The relationship between p, g, and the roots of the
equation is:
p = -(x.+x2).

= X, X,
then if, and only if Xq and X, are both negative,

p>e
g >0

The test for determining whether p and q are positive or

not is to apply the Routh Criterion. If the determinant

P 1
° 1

is positive for all n, all the roots in their real parts

An:

will be negative or else will be located in the left half
plane,

Suppose, however, that the original polynomial does
not satisfy the Routh Criterion. A convenient shift of
the axis of reference can solve the difficulty, and the
Routh Criterion is used again as a test. The shift of the
imaginary axis is repeated until the determinant of the

shifted polynomial.




Y Ly
aQ
| x
X -
]
|
xt ]
Figure B-1 Shift of the real part of the roots of
4 polyilomial
exhibits the condition An > 0O

for all n.
The shift is performed by a new variable

x :

#
X
|

o

so that the new equation with the root-shift of "a" units
will be:

n n-=1
f(x'-a) <~ do (x'+a) a, (x'+a) ;

¥ ...*4q, co

The new series of coefficients will be:

Po = G

P, = dga + a,

: n n-4
}Pn = Go A

174
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and the new polynomial is

7[{)(') = Po x’n + Py X'n-1

E Pn:O

or
/(X-a) = Po (x-a)yl + Py (><-a)m-1 4+ .. 4 P =0

In order to generate the coefficient of P,.proceed
by synthetic division. 1In this manner, obtain the roots
with their real part shifted to the left by a given
amount. There is an easy way to perform synthetic.division
by using computing methods. The shifted polynomial is
tested again for the Routh Criterion as previously explained.,

The Bairstowe's method can be applied now with greater
effiéiency, since the initial values of p and q are chosen
as small positive numbers with the security that they are
fairly close to the actual values of p and g of the
quadratic factors and that the convergence of the method
is that it will be rapid.

Note that the improved method for the estimation of
P and g is correct in the two cases found which is shown
in Figure B-2.

The rightmost root of {,(x) is real; however, f{, (x)
shows a complex root. In both cases the method proposed

is correct, since the real part of the roots is observed.
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7(' rg 7(: ()

(asbi)

|
~ I
l
/x\\_/xz } x3\ x
|

Q -t G -b\

Figure B 2 Evaluation of p and q for (a) real roots
only and (b) real and complex roots

-

The estimation of the error, however, is different in each

case, since for /;(ﬁ
q=r“ri B~

i . as bt
When  « =r, , the following relation is obtained:
)qf;_ <a7'+&;l '
An improved method for the Routh Criterion has been

devised. Suppose that 4,. =°
b

Figure B-3 pPolynomial with real roots opposite or zero

v
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The meaning is that the roots of the given polynomial
have their real part opposite or zero. The two cases are

shown in Fig. B-2, where

P:o
ﬁ,=ﬁ

One good approximation for the quadratic factor in this

2

area can be:
m = X' 4 E,x + €,

By choosing a small value for € , the convergence
can be rapid, and ¥y and b will be obtained immediately.

At this point the general case can be considered.
By applying the same techniques which have been explained,
and througn successive SN1lITS OI TNe redi pdliL 0L Lhe
roots of the original polynomial obtained by synthetic
division, the values obtained for p and q will be. fairly
close to the actual ones. Choose, for example, an
intexval of 0.5. After t shifts, the Routh Criterion test
finally results in A, =o . At this point the value of

the rightmost root as estimated will be:

q* = os t

Now a rotation is made, pivoting on the "y" axis. 1In
other words, x is replaced by (-x)in the polynomial. Apply-

ing this same technique, the estimated value will be
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obtained for the leftmost root after ¢t shifts, as in

Yoo = -ost

Then the estimated values for p and g will be:

The p* and g* values can then be used in Bairstowe's

method as intiial values to find the actual roots. The

efficiency of the method will depend, of course, on the

“rates" chosen for the shift. The value of 0.5 seems to

be reasonable for most cases:

This method has only two inconveniences:

1) It fails in case a complex zero is found in

one or both sides.

2) Furthermore, the accuracy of the method

decreases notably (see Fig. B-2).

The solution to the first inconvenience is to apply
the Descartes Rule of Signs or Stvrm sequences if:

1) a complex zero is detected, the method
remains satisfactory.

2) all roots are complex zeroes. Then

4

9" - (54 + R/(c")ij

f,*gzr""
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3) all of the roots except one are imaginary
(complex), the lower limits of the negative
roots are determined. Then, by rotating
{/X) into f(-x and applying the
Routh Criterion, the rightmost or left-
most complex zeroes will be obtained and
solution 2 (above) can be used.

If more than one root is present, the upper and lower
limits for them are easily found by applying Descates's
method, and a good estimation for the values of these
roots is again available. The method is efficieﬁt and

precise even when complex roots are present,
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